RAS Chemistry & Material ScienceХимия высоких энергий High Energy Chemistry

  • ISSN (Print) 0023-1193
  • ISSN (Online) 3034-6088

Uniformity of electron beam cross-linking of polyethylene depending on the distribution of the absorbed radiation dose

PII
S30346088S0023119325040061-1
DOI
10.7868/S3034608825040061
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 4
Pages
229-234
Abstract
The crosslinking of polyethylene of pipe grades via 900 keV electrons at an absorbed dose of 50 to 400 kGy in the presence of antioxidants and a crosslinking agent was studied. The degree of crosslinking of polyethylene was measured by the content of the gel fraction, determined by its extraction in xylene. It was shown that in all cases the 60% degree of cross-linking is achieved at a dose of about 100 kGy. It is advisable to combine the standard method for determining the gel fraction with visual inspection of samples to identify the conditions for the formation of an excessively low-melting material. It has been shown that ±7% crosslinking degree non-uniformity can be achieved with dose non-uniformity of up to ±50%.
Keywords
полиэтилен сшивание электронный пучок неравномерность дозы неравномерность сшивания
Date of publication
01.04.2025
Year of publication
2025
Number of purchasers
0
Views
19

References

  1. 1. Burillo G., Clough R.L., Czvikovszky T., Guven O., Le Moel A., Liu W., Singh A., Yang J., Zaharescu T. // Radiat. Phys. Chem. 2002. V. 64. P. 41.
  2. 2. Dorigato A. // Adv. Ind. Eng. Polym. Res. 2021. V. 4. P. 53.
  3. 3. Geyer R., Jambeck J.R., Law K.L. // Sci. Adv. 2017. V. 3. P. e1700782.
  4. 4. Chmielewski A.G. // Radiat. Phys. Chem., 2023. V. 213. P. 111233.
  5. 5. Ponomarev A.V., Gohs U., Ratnam C.T., Horak C. // Radiat. Phys. Chem. 2022. V. 201. P. 110397.
  6. 6. Ponomarev A.V. // High Energy Chem. 2020. V. 54. P. 194.
  7. 7. Woods R., Pikaev A. // Applied Radiation Chemistry. Radiation Processing. NY: Wiley, 1994.
  8. 8. Pikaev A.K. // High Energy Chem. 2000. V. 34.
  9. 9. Ponomarev A.V. // Radiat. Phys. Chem. 2016. V. 118. P. 138.
  10. 10. Albrecht V., Simon F., Reinsch E., Schünemann R., Gohs U., Kretzschmar B., Peuker U.A. // Recover. Recycl. Technol. Worldw. 2016. V. 2. P. 36.
  11. 11. Cleland M., Galloway R., Genin F., Lindholm M. // Radiat. Phys. Chem. 2002. V. 63. P. 729.
  12. 12. Perrin C., Griseri V., Laurent C. // IEEE Trans. Dielectr. Electr. Insul. 2008. V. 15. P. 958.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library