- PII
- S30346088S0023119325030055-1
- DOI
- 10.7868/S3034608825030055
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 59 / Issue number 3
- Pages
- 167-173
- Abstract
- The degradation of phenylalanine in an acidic aqueous solution (pH 3) with a concentration of 1.33 × 10 mol/L under the action of UV radiation of a 253.7 nm mercury lamp, hydroxyl radicals generated by cold plasma of a corona electric discharge, and hydroperoxyl radicals formed in water under the action of pulsed radiation of a hot plasma was studied. The degradation product identified by the fluorescence method is tyrosine. The quantum yields of phenylalanine degradation and tyrosine formation in solutions saturated and depleted in atmospheric oxygen were determined. Possible reaction mechanisms were considered.
- Keywords
- фенилаланин тирозин радикал OH радикал HO УФ-излучение квантовый выход
- Date of publication
- 01.03.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 12
References
- 1. Bruggeman P., Locke B.R., Gardenies H. et al. (41 authors) // Plasma Sources Sci. Technol. 2016. V. 25. 053002.
- 2. Locke B.R., Mededovic S., Lukes P. // Plasma Process and Polymers. 2024. e2400207. https://doi.org/10.1002/ppap.202400207
- 3. Matthews D.E. // J. Nutrition. 2007. V. 137. 1549S. Шлапакова Т.И., Костин Р.К., Тягунова Е.Е. // Биоорганическая химия. 2020. Т. 46. № 5. С. 466.
- 4. Griffits H.R., Moller L., Bartosz G. et al. // Mol. Aspects Med. 2002. V. 23. P. 101.
- 5. Fitzpatrick P.F. // Biochemistry. 2003. V. 12. № 48. P. 14083.
- 6. Hsu J.W., Jahoop F., Butte N.F., Heird W.C. // Pediat. Res. 2011. V. 69. № 4. P. 341.
- 7. Srivastava A., Srivastava N., Dohare R.K. // J. Phys. Org. Chem. 2024. https://doi.org/10.1002/poc.4669
- 8. Pattison D.I., Rahmanto A.S., Davies M.J. // Photochem. Photobiol. Sci. 2012. V. 11. P. 38.
- 9. Weng Y., Su C-J., Jiang H., Chiang C.-W. // Sci. Rep. 2022. V. 8. № 12. 18994. https://doi.org/10.1038/s41598-022-23481-6
- 10. Salmahaminati, Roca-Sanjuan D. // ACS Omega. 2024. V. 9. P. 35356.
- 11. Scappini F., Capobianco F., Casadei R. et al. // Int. J. of Astrobiol. 2007. V. 6. P. 4.
- 12. Jin F., Leitich J., von Sonntag C. // J. of Photochem. Photobiol. A: Chemistry. 1995. V. 85. P. 101.
- 13. Kopec K., Ryzko A., Major R. et al. // ACS Omega. 2022. V. 7. 39234.
- 14. Tatsuno I., Niimi Y., Tomita M. et al. // Sci. Rep. 2021. V. 11. P. 22310. https://doi.org/10.1038/541598-021-01543-5
- 15. Rosenzweig Z., Garcia J., Thompson G.L., Perez L.J. // PLoS ONE. 2024. V. 19. № 11. E0311232.
- 16. Piskarev I.M. // High Energy Chem. 2024. V. 58. № 5. P. 480.
- 17. Коновалов В.П., Сон Э.Е. Химия плазмы / под ред. Е.М. Смирнова. М. Энергоатомиздат, 1987. Вып. 14. С. 194.
- 18. Александров Н.П., Высикайло Ф.И., Исламов Р.Ш. и др. // Теплофизика высоких температур. 1981. Т. 19. № 1. С. 22.
- 19. Piskarev I.M. // Res. J. Pharm. Biol. Chem. Sci. 2016. V. 7. № 4. P. 1171.
- 20. Пискарев И.М. // Химия высоких энергий. 2016. Т. 50. № 5. С. 449.
- 21. Пикаев А.К. Современная радиационная химия. Радиолиз газов и жидкостей. М.: Наука, 1986.
- 22. Luo Yu-Ran. Handbook of bond dissociation energies in organic compounds. Boca Raton, London, New York, Washington: CRC Press LLC, 2003. P. 1–94.
- 23. Рыбакова Л.П., Алексанян Л.Р., Капустин С.И., Бессмельцев С.С. // Вестник гематологии. 2022. Т. 18. № 4. С. 26.