RAS Chemistry & Material ScienceХимия высоких энергий High Energy Chemistry

  • ISSN (Print) 0023-1193
  • ISSN (Online) 3034-6088

DOSE EQUALIZATION IN ELECTRON BEAM NEUTRALIZATION OF IMPURITIES IN WATER

PII
S0023119325020071-1
DOI
10.31857/S0023119325020071
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 2
Pages
118-123
Abstract
A promising design of an irradiator for high-speed electron beam treatment of wastewater in a jet mode is considered. The feasibility of combining technical solutions previously used separately in the design of the ELV-12 and Electron-10 accelerators is demonstrated. A high-speed water jet (>1 m/s) is irradiated from both sides in the gap between two beam windows, directing the beams at a = 45-60° angle to the plane of the jet. In this case, the useful thickness of the jet, which ensures maximum uniformity of irradiation with 1, 2 and 3 MeV electrons, as well as the lowest beam energy losses, is 5.2, 13.1 and 20.8 mm at a = 60° and 4.2, 10.7 and 17 mm at a = 45°, respectively. Options for simultaneous irradiation of two and four water jets are being considered.
Keywords
ускоритель электронов сточные воды электронно-лучевая обработка двухстороннее облучение кривые глубина-доза
Date of publication
20.11.2024
Year of publication
2024
Number of purchasers
0
Views
15

References

  1. 1. Chmielewski A.G. // Radiat. Phys. Chem. 2023. V. 213. P. 111233.
  2. 2. Ponomarev A.V., Ershov B.G. // Environ. Sci. Technol. 2020. V. 54. P. 5331.
  3. 3. Kim Y., Ershov B.G., Ponomarev A.V. // High Energy Chem. 2020. V. 54. P. 462.
  4. 4. Berejka A.J., Cleland M.R. // Industrial Radiation Processing with Electron Beams and X-rays. IAEA & IIA, Vienna, 2011.
  5. 5. Meeroff D.E., Bloetscher F., Shaha, B. // Radiat. Phys. Chem. 2020. V. 168. P. 108541.
  6. 6. Domarov E.V., Vorobyov D.S., Golkovsky M.G., Golubenko Y.I., Korchagin A.I., Kuksanov N.K. et al. // Sib. J. Phys. 2019. V. 14. P. 5.
  7. 7. Kuksanov N.K., Salimov R.А., Fadeev S.N., Nemytov P.I., Golubenko Y.I., Korgachin et al. // Electrotech. Electron. 2018. V. 53. P. 165.
  8. 8. Woods R., Pikaev A. // Applied radiation chemistry. Radiation processing. Wiley, NY, 1994.
  9. 9. Bludenko A.V., Ponomarev A.V. // High Energy Chem. 2024. V. 58. P. 429.
  10. 10. Han B., Kyu Kim J., Kim Y., Seung Choi J., Young Jeong K. // Radiat. Phys. Chem. 2012. V. 81. P. 1475.
  11. 11. Valtman D., Ivanov A., Nikiforov E., Ovchinnickov V., Svinin M., Tolstun N. // Vopr. At. Nauk. i Tekhniki. Yad. Issled. 1999. V. 3. P. 16.
  12. 12. Tolstun N.G., Efremov A.V., Ivanov A.S., Kuzhlev A.N., Maznev V.P., Machecha A.I. et al. // 24th Russian Particle Accelerator Conference, RuPAC 2014. Obninsk, Russia, 2014. P. 327.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library