RAS Chemistry & Material ScienceХимия высоких энергий High Energy Chemistry

  • ISSN (Print) 0023-1193
  • ISSN (Online) 3034-6088

SPECTROSCOPY OF RADIATION-INDUCED INTERMEDIATES FORMED BY PHOSPHINE IRRADIATION IN INERT MATRICES: ANIONIC PARTICLES

PII
S0023119325020069-1
DOI
10.31857/S0023119325020069
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 2
Pages
111-117
Abstract
Phosphine (PH) is one of the key inorganic molecules that arise from various biogenic compounds in terrestrial and planetary atmospheres. The action of ionizing radiation on phosphine molecules may result in the formation of charged particles, the characteristics of which are not sufficiently studied. In the present work, the vibrational spectra of isolated anions PH and PH which can be stabilized by the action of X-ray radiation on the systems PH/Ne and PH/Ar at 4.5 K have been experimentally obtained and characterized for the first time. The results obtained show that the frequencies of P-H valence vibrations in anionic particles are shifted to the red region relative to the frequencies of vibrations in the corresponding neutral molecules or radicals, which indicates the weakening of P-H bonds as a result of electron capture. Based on the analysis of the structure of the PH absorption bands in the neon matrix, it is suggested that this anion can arise by two different mechanisms - capture of thermalized electrons by PH...H pairs stabilized in one cell and dissociative capture of “hot” electrons by phosphine molecules.
Keywords
анионы фосфин радиационная химия матричная изоляция ИК-спектросокпия астрохимия
Date of publication
21.11.2024
Year of publication
2024
Number of purchasers
0
Views
17

References

  1. 1. Bains W., Petkowski J.J., Sousa-Silva C. et al. // Astrobiology. 2019. V. 19. № 7. P. 885; https://doi.org/10.1089/ast.2018.1958
  2. 2. Sousa-Silva C., Seager S., Ranjan S. et al. // Astrobiology. 2020. V. 20. № 2. P. 235; https://doi.org/10.1089/ast.2018.1954
  3. 3. Omran A., Oze C., Jackson B. et al. // Astrobiology. 2021. V. 21. № 10. P. 1264; https://doi.org/10.1089/ast.2021.0034
  4. 4. Turner A.M., Abplanalp M.J., Kaiser R.I. // Astrophys. J. Lett. 2016. V. 819. № 2. P. 97; https://doi.org/10.3847/0004-637X/819/2/97
  5. 5. Turner A.M., Bergantini A., Abplanalp M.J. et al. // Nat.Commun. 2018. V. 9. № 1. P. 3851; https://doi.org/10.1038/s41467-018-06415-7
  6. 6. Zhu C., Eckhardt A.K., Chandra S. et al. // Nat.Commun. 2021. V. 12. № 1. 5467; https://doi.org/10.1038/s41467-021-25775-1
  7. 7. Zhu C., Bergantini A., Singh S.K. et al. // Chem.Commun. 2021. V. 57. № 40. P. 4958; https://doi.org/10.1039/D0CC08411E
  8. 8. Feldman V.I., Ryazantsev S.V., Saenko E.V. et al. // Rad. Phys. Chem. 2016. V. 124. P. 7; https://doi.org/10.1039/C6CP06082J
  9. 9. Saenko E.V., Feldman V.I. // Phys. Chem. Chem. Phys. 2016. V. 18. № 47. P. 32503; https://doi.org/10.1039/C6CP06082J
  10. 10. Shiryaeva E.S., Tyurin D.A., Feldman V.I. // J. Phys. Chem. A. 2016. V. 120. № 40. P. 7847; https://doi.org/10.1021/acs.jpca.6b07301
  11. 11. Zasimov P.V., Sanochkina E.V., Feldman V.I. // Phys. Chem. Chem. Phys. 2022. V. 24. № 1. P. 419; https://doi.org/10.1039/D1CP03999G
  12. 12. Zasimov P.V., Sanochkina E.V., Tyurin D.A. et al. // Phys. Chem. Chem. Phys. V. 25. № 6. P. 4624; https://doi.org/10.1039/D2CP05356J
  13. 13. Zasimov P.V., Sanochkina E.V., Tyurin D.A. et al. // Phys. Chem. Chem. Phys. V. 25. № 33. P. 21883; https://doi.org/10.1039/D3CP02834H
  14. 14. Shiryaeva E.S., Panfutov O.D., Tyurin D.A. et al. // Rad. Phys. Chem. 2023. V. 206. 110786; https://doi.org/10.1016/j.radphyschem.2023.110786
  15. 15. Knight L.B., Tyler D.J., Kudelko P. et al. // J. Chem. Phys. 1993. V. 99. № 10. P. 7384; https://doi.org/10.1063/1.465719
  16. 16. Jacobs H., Hassiepen K.M. // Z. Anorg. Allg. Chem. 1985. V. 531. № 12. P. 108; https://doi.org/10.1002/zaac.19855311216
  17. 17. Knoll F., Bergerhoff G. // Monatsh. Chem. 1966. V. 97. P. 808; https://doi.org/10.1007/BF00932752
  18. 18. Feldman V.I. EPR and IR Spectroscopy of Free Radicals and Radical Ions Produced by Radiation in Solid Systems. P. 151. In: Lund, A., Shiotani, M. Applications of EPR in Radiation Research. Springer, Cham, 2014.
  19. 19. Laikov D.N., Ustynyuk Y.A. // Russ. Chem. Bull. 2005. V. 54. P. 820; https://doi.org/10.1007/s11172-005-0329-x
  20. 20. Laikov D.N. // Chem. Phys.Lett. 2005. V. 416. № 1-3. P. 116; https://doi.org/10.1016/j.cplett.2005.09.046
  21. 21. Laikov D.N. // Theor. Chem. Acc. 2019. V. 138. P. 1; https://doi.org/10.1007/s00214-019-2432-3
  22. 22. Behrendt W. et al. Phosphorus and Hydrogen. P Phosphorus. Gmelin Handbook of Inorganic and Organometallic Chemistry 8th Edition, v. P / a-c / c / 1. Springer, Berlin, Heidelberg, 1993; https://doi.org/10.1007/978-3-662-08847-0_1
  23. 23. Ervin K.M., Lineberger W.C. // J. Chem. Phys. 2005. V. 122. № 19. 194303; https://doi.org/10.1063/1.1881153
  24. 24. Schwentner N., Himpsel F.J., Saile V. et al. // Phys. Rev. Lett. 1975. V. 34. № 9. P. 528; https://doi.org/10.1103/PhysRevLett.34.528
  25. 25. Perluzzo G., Bader G., Caron L.G. et al. // Phys. Rev. Lett. 1985. V. 55. № 5. P. 545; https://doi.org/10.1103/PhysRevLett.55.545
  26. 26. Steinberger I.T., Bass A.D., Shechter R. et al. // Phys. Rev. B. 1993. V. 48. № 11. P. 8290; https://doi.org/10.1103/PhysRevB.48.8290
  27. 27. Rosmus P., Meyer W. // J. Chem. Phys. 1978. V. 69. № 6. P. 2745; https://doi.org/10.1063/1.436871
  28. 28. Szmytkowski C., Kłosowski Ł., Domaracka A. et al. // J. Phys. B. 2004. V. 37. № 9. P. 1833; https://doi.org/10.1088/0953-4075/37/9/005
  29. 29. Halmann M., Platzner I. // J. Phys. Chem. 1969. V. 73. № 12. P. 4376; https://doi.org/10.1021/j100846a062
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library