- PII
- S0023119325010064-1
- DOI
- 10.31857/S0023119325010064
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 59 / Issue number 1
- Pages
- 46-52
- Abstract
- Lithium salt of cobalt tetra-nuclear complex was synthesized and characterized by physicochemical methods Li10[Co4(H2O)2(α-PW9O34)2] 24H2O (1) – active homogeneous catalyst for the reaction of water oxidation with the formation of О2. ESI – mass spectrometric method shows the presence in the mass spectrum of the maximum peak with m/z = 1182.611 corresponding to the ion [Co4(PW9O34)2·HLi5]4– which forms a sandwich-type structure. Measurements of temperature-dependent magnetic susceptibility showed the predominance of antiferromagnetic interaction in the complex 1. The photochemical oxidation reaction of water under visible light irradiation in the presence of electron acceptor was studied Na2S2O8, photosensitizer bpy3RuCl2 and the catalyst. Efficiency of the catalytic system under optimal reaction conditions (рН 8, [1] = 5 μM), catalyst turnover number TON = 330, quantum yield of photogenerated oxygen (F = 0.46) is higher than that of the sodium salt of a similar catalyst (TON = 220, F = 0.27).
- Keywords
- искусственный фотосинтез четырехъядерный комплекс кобальта фотокатализ окисление воды квантовый выход
- Date of publication
- 06.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 17
References
- 1. Джабиев Т.С., Шилов А.Е. // Успехи химии. 2012. Т. 81. № 12. С. 1146.
- 2. Kärkäs M.D., Verho O., Jonston E.V., Åkermark B. // Chem. Rev. 2014. V. 114. P. 11863. https://doi.org/10.1021/cr400572
- 3. Hurst J.K. // Science. 2010. V. 328. P. 315. https://doi.org/10.1126/science.1187721
- 4. Yagi M., Kaneko M. // Chem. Rev. 2001. V. 101. P. 21. https://doi.org/10.1021/cr9801081
- 5. Sens C., Romero I., Rodriguez M. et al. // J. Am. Chem.Soc. 2004. V. 126. P. 7798. https://doi.org/10.1021/ja0486824
- 6. Suess-Fink G. // Angew. Chem. Int. Ed. 2008. V. 47. P. 5888. https://doi.org/10.1002/anie.200801121
- 7. Gersten S.W., Samuels G.J., Meyer T.J. // J. Am. Chem. Soc. 1982. V. 104. P. 4029. https://doi.org/10.1021/ja00378a053
- 8. Geletii Y. V., Botar B., Kogerler P. et. al // Angew. Chem. Int. Ed. 2008. V. 47. № 21. P. 3847. https://doi.org/10.1002/anie.200705652
- 9. Sartorel A.; Carraro M.; Scorrano G. et al // J. Am. Chem. Soc. 2008. V. 130. P. 5006. https://doi.org/10.1021/ja0778371
- 10. Geletii Y.V., Huang Z., Hou Y. et al // J. Am. Chem. Soc. 2009. V. 131. P. 7522. https://doi.org/10.1021/ja901373m
- 11. Toma F. M.; Sartorel A.; Iurlo M. et al. //. Nat. Chem. 2010. V. 2. P. 826.
- 12. Besson C., Huang Z., Geletii Y.V. et al. // Chem. Commun. 2010. V. 46. P. 2784. https://doi.org/10.1039/B926064A
- 13. Murakami M., Hong D., Suenobu T. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 11605.
- 14. Zhu G., Geletii Y.V., Kogerler P. et al. // Dalton Trans. 2012. V. 41. P. 2084.
- 15. Lv H., Geletii Y.V., Zhao C. et al. // Chem. Soc. Rev. 2012. V. 41. P. 7572.
- 16. Sartorel A., Bonchio M., Campagna. S., Scandola, F. // Chem. Soc. Rev. 2014. V. 42. P. 2262. https://doi.org/10.1039/c2cs35287g
- 17. Vickers J.W., Lv H., Sumliner J.M. et al. // J. Am. Chem. Soc. 2013. V. 135. P. 14110. https://doi.org/10.1021/ja4024868
- 18. Sumliner J.M., Lv H., Fielden J. et al. // Eur. J. Inorg. Chem. 2014. V. 635.
- 19. Vickers J.W., Sumliner J.M., Lv H. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 11942.
- 20. Han X.-B., Zhang Z.-M., Zhang T. et al. // J. Am. Chem. Soc. 2014. V. 136. P. 5359.
- 21. Шматко Н.Ю., Джабиева З.М. Химическое моделирование фермента, окисляющего воду в фотосистеме II. Фотокаталитические преобразователи солнечной энергии в энергию химических топлив. LAP LAMBERT Academic Publishing. Saarbrucken, Deutschland, 2012. 76 с. ISBN: 978-3-659-29482-2.
- 22. Джабиева З.М., Ткаченко В.Ю., Джабиев Т.С. // Химия высоких энергий. 2017. Т. 51. № 3. С. 230; https://doi.org/10.7868/S0023119317030056
- 23. Dzhabieva Z.M., Shilov G.V., Avdeeva L.V. et al. // Russian Journal of Inorganic Chemystry. 2024. P. 1. https://doi.org/10.1134/S0036023624601004
- 24. Bi L.H., Huang R.D., Peng J. et al. // J. Chem. Soc. Dalton Trans. 2011. V. 121.
- 25. Накамото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир. 1966. 411 с.
- 26. Hatchard C.G., Parker C.A. // Proc. Roy Soc. London. 1956. V. A235. № 1203. P. 518.
- 27. Yin Q., Tan J.M., Besson C. et al // Science. 2010. V. 328. P. 342.
- 28. Bao Li, Yi Yan, Fengyan Li et al. // Inorganica Chimica Acta. 2009. V. 362. P. 2796.