RAS Chemistry & Material ScienceХимия высоких энергий High Energy Chemistry

  • ISSN (Print) 0023-1193
  • ISSN (Online) 3034-6088

Spectral and photochemical properties of dipyrenylcyclobutanes formed in the [2+2]-photocycloaddition reaction from biphotochromic dyads

PII
S0023119325010048-1
DOI
10.31857/S0023119325010048
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 1
Pages
26-38
Abstract
The properties of dipyrenylcyclobutanes CB10 and CBoX, which are products of the [2+2]-photocycloaddition reaction (PCA) of the corresponding biphotochromic dyads D10 and DoX, have been studied. The absorption and fluorescence spectra of cyclobutane CBoX revealed the presence of different types of pyrene substituents, with strong and weak interactions in the ground S0 and excited S1 states. In both cyclobutanes, energy transfer (ET) from the pyrenyl substituents to the cyclobutane rings is observed, initiating the cyclobutane opening reaction (retro-PCA), which occurs via a predissociation mechanism. The photochromic pair “D10-CB10” is an example of a new type of photochrome operating by the mechanism of the PCA reaction and can function as a two-channel color-correlated fluorescent photoswitch.
Keywords
бифотохромная диада [2+2]-фотоциклоприсоединение циклобутан пирен флуоресценция перенос энергии предиссоциация фотопереключатель
Date of publication
06.10.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. Kirkus M., Janssen R.A.J., Meskers S.C.J. // J. Phys. Chem. A. 2013. V. 17. P. 4828.
  2. 2. Margulies E.A., Shoer L.E., Eaton S.W., Wasielewski M.R. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 23735.
  3. 3. Long S., Wang Y., Vdovic S., Zhou M., Yan L., Niu Y. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 18567.
  4. 4. Cho D.W., Fujitsuka M., Sugimoto A., Majima T. // J. Phys. Chem. A. 2008. V. 112. P. 7208.
  5. 5. Wang S., Bohnsack M., Megow S., Renth F., Temps F. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 2080.
  6. 6. Kucukoz B., Adinarayana B., Osuka A., Albinsson B. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 16477.
  7. 7. Letrun R., Lang B., Yushchenko O., Wilcken R., Svechkarev D., Kolodieznyi D. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 30219.
  8. 8. Chahal M.K., Liyanage A., Gobeze H.B., Payne D.T., Ariga K., Hill J.P., D’Souza F. // Chem. Commun. 2020. V. 56. P. 3855.
  9. 9. Liang C.K., Desvergne J.P., Bassani D.M. // Photochem. Photobiol. Sci. 2014. V. 13. P. 316.
  10. 10. Perrier A., Maurel F., Jacquemin D. // Acc. Chem. Res. 2012. V. 45. P. 1173.
  11. 11. Doddi S., Ramakrishna B., Venkatesha Y., Bangl P.R. // RSC Adv. 2015. V. 5. P. 56855.
  12. 12. Kim D., Park S.Y. // Optical Mater. 2018. P. 1800678.
  13. 13. Szacilowski K. // Chem. Rev. 2008. V. 108. P. 3481.
  14. 14. Будыка М.Ф. // Успехи химии. 2017. Т. 86. С. 181.
  15. 15. Andreasson J., Pischel U. // Coord. Chem. Rev. 2021. V. 429. P. 213695.
  16. 16. Будыка М.Ф., Поташова Н.И., Гавришова Т.Н., Ли В.М., Гак В.Ю., Гринева И.А. // Химия высоких энергий. 2018. Т. 52. С. 204.
  17. 17. Будыка М.Ф., Ли В.М., Гавришова Т.Н. // Химия высоких энергий. 2024. Т. 58, С. 77.
  18. 18. Budyka M.F., Fedulova J.A., Gavrishova T.N., Li V.M., Potashova N.I., Tovstun S.A. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 24137
  19. 19. Bera S., Bera A., Banerjee D. // Org. Lett. 2020. V. 22. P. 6458.
  20. 20. Sahu K.B., Ghosh S., Banerjee M., Maity A., Mondal S., Paira R. et al. // Med. Chem. Res. 2013. V. 22. P. 94.
  21. 21. Будыка М.Ф., Гавришова Т.Н., Ли В.М., Дозморов С.А. // Изв. АН. Сер.хим. 2023. Т. 72. С. 2013.
  22. 22. Winnik F.M. // Chem. Rev. 1993. V. 93. P. 587.
  23. 23. Siu H., Duhamel J. // J. Phys. Chem. B. 2008. V. 112. P. 15301.
  24. 24. Seixas de Melo J., Costa T., Francisco A., Macanita A.L., Gago S., Goncalves I.S. // Phys. Chem. Chem. Phys. 2007. V. 9. P. 1370.
  25. 25. Dong D.C., Winnik M.A. // Photochem. Photobiol. 1982. V. 35. P. 17.
  26. 26. Seixas de Melo J., Costa T., Miguel M.G., Lindman B., Schillen K. // J. Phys. Chem. B. 2003. V. 107. P. 12605.
  27. 27. Pomerantsev A.L., Chemometrics in Excel. Hoboken, John Wiley & Sons Inc., 2014.
  28. 28. Fischer E. // J. Phys. Chem. 1967. V. 71. P. 3704.
  29. 29. Perrier A., Maurel F., Jacquemin D. // Acc. Chem. Res. 2012. V. 45. P. 1173.
  30. 30. Budyka M.F., Gavrishova T.N., Li V.M., Tovstun S.A. // Spectr. Acta Part A. 2024. V. 320. P. 124666.
  31. 31. Braslavsky S.E., Fron E., Rodriguez H.B., Roman E.S., Scholes G.D., Schweitzer G. et al. // Photochem. Photobiol. Sci. 2008. V. 7. P. 1444.
  32. 32. Chung J.W., You Y., Huh H.S., An B.K., Yoon S.J., Kim S.H. et al. // J. Am. Chem. Soc. 2009. V.131. P. 8163.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library