RAS Chemistry & Material ScienceХимия высоких энергий High Energy Chemistry

  • ISSN (Print) 0023-1193
  • ISSN (Online) 3034-6088

Effect of solvents on optical properties and dynamics of exciton states in quantum dots CdZnS/ZnS doped with Mn2+

PII
S0023119325010011-1
DOI
10.31857/S0023119325010011
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 1
Pages
3-11
Abstract
The dynamics of differential absorption spectra of Mn2+ : Zn0.48Cd0.52S/ZnS quantum dots (QDs) after excitation with a femtosecond (fs) pulse of 360 nm in aprotonic nonpolar cyclohexane and polar propylene carbonate solvents in comparison with the protonic polar solvent water has been studied by femtosecond laser spectroscopy method. The absorption and luminescence spectra of QDs in water revealed bands related to trapped states. The fading band related to the edge exciton of QD attenuates significantly faster in water than in aprotonic solvents, which suggests rapid electron transfer from the 1Se level to trap states in competition with electron transfer to manganese. Apparently, the competition of these processes is the reason for the decrease in the quantum yield of manganese luminescence in Mn2+ : Zn0.48Cd0.52S/ZnS when passing from aprotonic solvents to water.
Keywords
фемтосекундная лазерная спектроскопия квантовые точки многоэкситонная релаксация “горячие” экситоны стохастическая кинетика
Date of publication
06.10.2025
Year of publication
2025
Number of purchasers
0
Views
27

References

  1. 1. Kamat P.V. // J. Phys. Chem. C. Am. Chem. Soc. 2008. V. 112. № 48. P. 18737–18753.
  2. 2. Sun P. et al. // Chem. Eng. J. 2023. V. 458. P. 141399.
  3. 3. Rtimi S., Kiwi J., Nadtochenko V. // Curr. Opin. Chem. Eng. 2021. V. 34. P. 100731.
  4. 4. Martynenko I.V. et al. // J. Mater. Chem. B. Royal Soc. Chem. 2017. V. 5. № 33. P. 6701–6727.
  5. 5. Cherepanov D. et al. // Nanomaterials. MDPI. 2021. V. 11. № 11. P. 3007.
  6. 6. Nadtochenko V. et al. // Chem. Phys. Lett. North-Holland. 2020. V. 743. P. 137160.
  7. 7. Pandey A., Sarma D. // Z. Anorg. Allg. Chem. 2016. V. 642. № 23. P. 1331–1339.
  8. 8. Wang C.W., Orrison C., Son D.H. // Bull. Korean Chem. Soc. 2022. V. 43. № 4. P. 492–500.
  9. 9. Yu W.W. et al. // Biochem. Biophys. Res. Commun. 2006. V. 348. № 3. P. 781–786.
  10. 10. Spirin M.G., Brichkin S.B., Razumov V.F. // High Energy Chem. 2015. V. 49. № 6. P. 426–432.
  11. 11. Cui S.C. et al. // J. Phys. Chem. C. Am. Chem. Soc. 2010. V. 114. № 2. P. 1217–1225.
  12. 12. Gostev F.E. et al. // High Energy Chem. 2018. V. 52. № 6. P. 508–509.
  13. 13. Gostev F.E. et al. // High Energy Chem. 2018. V. 52. № 6. P. 492–497.
  14. 14. du Fossé I. et al. // J. Phys. Chem. C. Am. Chem. Soc. 2021. V. 125. № 43. P. 23968–23975.
  15. 15. Moon H. et al. // Adv. Mater. 2019. V. 31. № 34. P. 1804294.
  16. 16. Nadtochenko V. et al. // J. Photochem. Photobiol. A Chem. 2022. V. 429. P. 113946.
  17. 17. Archer D.G., Wang P. // J. Phys. Chem. Ref. Data. 1990. V. 19. № 2. P. 371–411.
  18. 18. Simeral L., Amey R.L. // J. Phys. Chem. Am. Chem. Soc. 1970. V. 74. № 7. P. 1443–1446.
  19. 19. Barthel J., Feuerlein F. // J. Sol. Chem. 1984. V. 13. № 6. P. 393–417.
  20. 20. Hassan G.E. et al. // Opt. Mater. (Amst). North-Holland. 1996. V. 5. № 4. P. 327–332.
  21. 21. Kabachii Y.A. et al. // Mendeleev Commun. 2021. V. 31. № 3. P. 315–318.
  22. 22. Pradeep K.R., Viswanatha R. // APL Mater. 2020. V. 8. № 2. P. 20901.
  23. 23. Pradhan N., Peng X. // J. Am. Chem. Soc. 2007. V. 129. № 11. P. 3339–3347.
  24. 24. Klimov V.I. et al. // Phys. Rev. B. Am. Phys. Soc. 1999. V. 60. № 19. P. 13740.
  25. 25. Pechstedt K. et al. // J. Phys. Chem. C. Am. Chem. Soc. 2010. V. 114. № 28. P. 12069–12077.
  26. 26. Sethi R. et al. // Chem. Phys. Lett. North-Holland. 2010. V. 495. № 1–3. P. 63–68.
  27. 27. de Jesus J.P.A., Jimenez M.Z., La Porta F. de A. // Comput. Mater. Sci. 2021. V. 188. P. 110147.
  28. 28. Osman M.A., Abd-Elrahim A.G., Othman A.A. // J. Alloys Comp. 2017. V. 722. P. 344–357.
  29. 29. Wang M. et al. // Chem. Cent. J. Bio. Med Central. 2011. V. 5. № 1. P. 1–10.
  30. 30. Wang M. et al. // RSC Adv. Royal Soc. Chem. 2015. V. 5. № 106. P. 87496–87503.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library