- PII
- S30346088S0023119325050054-1
- DOI
- 10.7868/S3034608825050054
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 59 / Issue number 5
- Pages
- 336-343
- Abstract
- The effect of γ-irradiation of papain with doses from 30 to 700 kGy on light absorption in the UV and visible regions, isoelectric state, viscosity, surface tension and electrical conductivity of its aqueous solutions has been studied. It is shown that the increase of irradiation dose of papain on the one hand is accompanied by the increase of absorption in the UV and visible regions, as well as by the increase of electrical conductivity, on the other hand, the increase of irradiation dose of papain is accompanied by the decrease of viscosity and surface tension of its solutions. The main reasons for such changes are the destruction of peptide bonds in papain during radiolysis and reduction of its molecular weight, radiation-induced oxidation of amino acid residues and formation of carbonyl derivatives, as well as the formation and accumulation in papain macromolecules of various terminal primary amino groups carrying a positive charge.
- Keywords
- папаин γ-облучение физико-химические свойства светопропускание изоэлектрическое состояние вязкость поверхностное натяжение электропроводность
- Date of publication
- 01.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 16
References
- 1. Novinec M., Lenarcic B. // BioMolecular Concepts. 2013. V. 4. № 3. P. 287–308. https://doi.org/10.1515/bmc-2012-0054
- 2. Abu-Alruz K., Mazahreh A. S., Quasem J. M., Hejazin R. K., El-Qudah J.M. // American Journal of Agricultural and Biological Sciences. 2009. V. 4. № 3. P. 173–178. https://doi.org/10.3844/ajabssp.2009.173.178
- 3. Amri E., Mamboya F. // American Journal of Biochemistry and Biotechnology. 2012. V. 8. № 2. P. 99–104. https://doi.org/10.3844/ajbbsp.2012.99.104
- 4. Piva E., Ogliari F. A., de Moraes R. R., Cora F., Henn S., Correr-Sobrinho L. // Brazilian oral research. 2008. V. 22. №4. P. 364–370. https://doi.org/10.1590/S1806-83242008000400014
- 5. Lopes M. C., Mascarini R. C., da Silva B. M.C.G., Florio F. M., Basting R. T. // Journal of Dentistry for Children. 2007. V. 74. № 2. P. 93–97.
- 6. Sim Y.-C., Lee S.-G., Lee D.-C. Kang B.-Y., Park K.-M., Lee J.-Y., Kim M.-S., Chang I.-S., Rhee J.-S. // Biotechnology Letters. 2000. V. 22. P. 137–140. https://doi.org/10.1023/A:1005670323912
- 7. Traversa E., Machado-Santelli G.M., Velasco M. V.R. // International Journal of Pharmaceutics. 2007. V. 335. № 1–2. P. 163–166. https://doi.org/10.1016/j.ijpharm.2007.01.020
- 8. Beeley J. A., Yip H. K., Stevenson A. G. // British Dental Journal. 2000. V. 188. № 8. P. 427–430. https://doi.org/10.1038/sj.bdj.4800501
- 9. Shouket H. A., Ameen I., Tursunov O., Kholikova Kh., Pirimov O., Kurbonov N., Ibragimov I., Mukimov B. // IOP Conference Series: Earth and Environmental Science. 2020. V. 614. P. 012171. https://doi.org/10.1088/1755-1315/614/1/012171
- 10. Singh D., Singh R. // Radiation Physics and Chemistry. 2012. V. 81. № 11. P. 1781–1785. https://doi.org/10.1016/j.radphyschem.2012.06.010
- 11. Varca G. H.C., Ferraz C. C., Lopes P. S., Mathor M. B., Grasselli M., Lugão A. B. // Radiation Physics and Chemistry. 2014. V. 94. P. 181–185. https://doi.org/10.1016/j.radphyschem.2013.05.057
- 12. Varca G. H.C., Perossi G. G., Graselli M., Lugao A. B. // Radiation Physics and Chemistry. 2014. V. 105. P. 48–52. https://doi.org/10.1016/j.radphyschem.2014.05.020
- 13. Allayarova U. Yu., Demidov S. V., Blokhina S. V., Raevskaya T. A., Mishchenco D. V., Omel’chuk Yu. A., Allayarov S. R. // High Energy Chemistry. 2024. V. 58. № 5. P. 568–574. https://doi.org/10.1134/S0018143924700395
- 14. Berezovskaya I. V. // Pharmaceutical Chemistry Journal. 2003. V. 37. № 3. P. 139–141. https://doi.org/10.1023/A:1024586630954
- 15. Varca G. H.C., Kadlubowski S., Wolszczak M., Lugao A. B. Rosiak J. M., Ulanski P. // International Journal of Biological Macromolecules. 2016. V. 92. P. 654–659. https://doi.org/10.1016/j.ijbiomac.2016.07.070
- 16. Allayarov S. R., Rudneva T. N., Demidov S. V., Allayarova U. Yu., Chekalina S. D. // High Energy Chemistry. 2024. V. 58. № 5. P. 561–567. https://doi.org/10.1134/S0018143924700383
- 17. Wang G., Chen Y., Yan C., Lu Y. // Journal of Luminescence. 2015. V. 157. P. 229–234. https://doi.org/10.1016/j.jlumin.2014.09.002
- 18. Fruton J. S., Lavin G. I. // Journal of Biological Chemistry. 1939. V. 130. № 1. P. 375–381. https://doi.org/10.1016/S0021-9258 (18)73588-6
- 19. Darby H. H. // Journal of Biological Chemistry. 1941. V. 139. № 2. P. 721–725. https://doi.org/10.1016/S0021-9258 (18)72944-X
- 20. Donde R. B., Korgaonkar K. S. // International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine. 1962. V. 4. № 3. P. 285–297. https://doi.org/10.1080/09553006214550071
- 21. Korgaonkar K. S., Donde R. B. // International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine. 1962. V. 5. № 1. P. 67–77. https://doi.org/10.1080/09553006214550561
- 22. Timofeev-Resovskii N.V., Savich A. V., Shal’nov M. I. Introduction to molecular radiobiology: physicochemical basics. Moscow: Meditsina. 1981. 320 p.
- 23. Clement J. R., Lin W. S., Armstrong D. A. // Radiation Research. 1977. V. 72. № 3. P. 427–439. https://doi.org/10.2307/3574608
- 24. Myers L. S., Abernethy J. L. // Radiation Research. 1964. V. 22. № 2. P. 334–344. https://doi.org/10.2307/3571663
- 25. Klychkhanov N. K., Ismailova J. G., Astaeva M. D. Free radical processes in biological systems: study guide. Makhachkala: DSU. 2012. 188 p. https://eor.dgu.ru/lectures_f/Учебное%20пособие%20Свободнорадикальные%20процесссы/СРП%20в%20биологических%20системах%202012%20Учебное%20пособие.htm
- 26. Mosolov V. V. Proteolytic enzymes. Moscow: Nauka. 1971. 414 p.
- 27. Fazolin G. N., Varca G. H.C., Kadlubowski S., Sowinski S., Lugao A. B. // Radiation Physics and Chemistry. 2020. V. 169. P. 107984. https://doi.org/10.1016/j.radphyschem.2018.08.033
- 28. Ma C.-Y., Sahasrabudhe M.R., Poste L.M., Harwalkar V.R., Chambers J.R., O’Hara K.P.J. // Canadian Institute of Food Science and Technology Journal. 1990. V. 23. № 4–5. P. 226–232. https://doi.org/10.1016/S0315-5463 (90)70248-9
- 29. Song H.-P., Kim B., Choe J.-H., Jung S., Kim K.-S., Kim D.-H., Jo C. // Radiation Physics and Chemistry. 2009. V. 78. № 3. P. 217–221. https://doi.org/10.1016/j.radphyschem.2008. 10.001
- 30. Antipkin N. R., Bogorodskaya M. A. // Uspekhi v chemii i khimicheskoy tekhnologii. 2011. V. 25. № 6. P. 99–104. https://cyberleninka.ru/article/n/o-vliyanii-gamma-oblucheniya-na-svoystva-zhelatina/viewer
- 31. Davies M. J. // Biochemical Journal. 2016. V. 473. № 7. P. 805–825. https://doi.org/10.1042/BJ20151227