RAS Chemistry & Material ScienceХимия высоких энергий High Energy Chemistry

  • ISSN (Print) 0023-1193
  • ISSN (Online) 3034-6088

ON THE EFFECT OF IONIZING RADIATION ON A FLUORESCENT DYE IN SOLUTION, IN COMPLEX WITH DNA AND IN ITS CHOLESTERIC LIQUID-CRYSTALLINE DISPERSION

PII
S30346088S0023119325050044-1
DOI
10.7868/S3034608825050044
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 5
Pages
322-335
Abstract
A comprehensive study on the behavior of SYBR Green I (SG) dye when it is exposed to ionizing radiation (IR) in solution in the free state, in complex with DNA, and also in its cholesteric liquid-crystalline dispersions (CLCDs) was performed. It has been shown that introduction of SG into the DNA CLCD not only significantly increases its own resistance to IR but also leads to the emergence of additional functionality in these promising dosimetric systems – the ability to register the absorbed dose by the changes in fluorescence intensity or amplitude of the induced circular dichroism signal. The dye addition also makes it possible to significantly expand the range of doses registered with their help.
Keywords
SYBR Green I жидкие кристаллы ДНК ионизирующее излучение дозиметрия флуоресценция круговой дихроизм
Date of publication
01.05.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Jordan K., Avvakumov N. // Phys. Med. Biol. 2009. V. 54. № 22. P. 6773. https://doi.org/10.1088/0031-9155/54/22/002
  2. 2. Abd El-kareem M. S. M., Abdelhady A. M., Elmaghraby E. K. et al. // Radiat. Phys. Chem. 2025. V. 226. P. 112284. https://doi.org/10.1016/j.radphyschem.2024.112284
  3. 3. El-Assy N. B., Ibrahim I. A., Abdel-Fattah A. T. et al. // J. Radioanal. Nucl. Chem. 1986. V. 97. P. 247. https://doi.org/10.1007/bf02035669
  4. 4. Vysotskaya N. A., Bortun L. N., Ogurtsov N. A. et al. // Int. J. Radiat. Appl. Instrum. Part C. 1986. V. 28. № 5–6. P. 469. https://doi.org/10.1016/1359-0197 (86)90171-2
  5. 5. Gafar S. M., El-Kelany M. A., El-Shawadfy S. R. // J. Radiat. Res. Appl. Sci. 2018. V. 11. № 3. P. 190. https://doi.org/10.1016/j.jrras.2018.01.004
  6. 6. Oberoi P. R., Fuke C. A., Maurya C. B. et al. // Nucl. Instrum. Methods Phys. Res. B. 2020. V. 466. P. 82. https://doi.org/10.1016/j.nimb.2020.01.019
  7. 7. Kinashi K., Tsuchida H., Sakai W. et al. // ChemistryOpen. 2020. V. 9. № 5. P. 623. https://doi.org/10.1002/open.202000071
  8. 8. Park M. A., Moore S. C., Limpa-Amara N. et al. // Nucl. Instrum. Methods Phys. Res. A. 2006. V. 569. № 2. P. 543. https://doi.org/10.1016/j.nima.2006.08.090
  9. 9. Ergun E. // J. Fluoresc. 2021. V. 31. № 4. P. 941. https://doi.org/10.1007/s10895-021-02715-2
  10. 10. Jiang L., Li W., Nie J. et al. // ACS Sens. 2021. V. 6. № 4. P. 1643. https://doi.org/10.1021/acssensors.1c00204
  11. 11. Qin D., Han Y., Hu L. // J. Fluoresc. 2023. V. 33. № 5. P. 2015. https://doi.org/10.1007/s10895-023-03205-3
  12. 12. Kolyvanova M. A., Klimovich M. A., Koshevaya E. D. et al. // Photonics. 2023. V. 10. № 6. P. 671. https://doi.org/10.3390/photonics10060671
  13. 13. Choudhary M. K., Gorai S., Patro B. S. et al. // ChemPhotoChem. 2023. V. 8. № 2. P. e202300245. https://doi.org/10.1002/cptc.202300245
  14. 14. Lifanovsky N. S., Yablontsev N. A., Belousov A. V. et al. // J. Fluoresc. 2024. In press. https://doi.org/10.1007/s10895-024-03934-z
  15. 15. Lifanovsky N., Spector D., Egorov A. et al. // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025. V. 326. P. 125227. https://doi.org/10.1016/j.saa.2024.125227
  16. 16. Колыванова М. А., Лифановский Н. С., Никитин Е. А. и др. // Химия высоких энергий. 2024. Т. 58. № 2. P. 107. https://doi.org/10.31857/s0023119324020042
  17. 17. de Groot F. M. H., Gottarelli G., Masiero S. et al. // Angew. Chem. Int. Ed. Engl. 1997. V. 36. № 9. P. 954. https://doi.org/10.1002/anie.199709541
  18. 18. Obeidat M., McConnell K. A., Li X. et al. // Med. Phys. 2018. V. 45. № 7. P. 3460. https://doi.org/10.1002/mp.12956
  19. 19. Li X., McConnell K. A., Che J. et al. // Radiat. Res. 2020. V. 194. № 2. P. 173. https://doi.org/10.1667/rr15500.1
  20. 20. Ai Z., Wang L., Guo Q. et al. // Chem. Commun. 2021. V. 57. № 41. P. 5071. https://doi.org/10.1039/d1cc01851e
  21. 21. Евдокимов Ю. М., Салянов В. И., Семенов С. В., Скуридин С. Г. Жидкокристаллические дисперсии и наноконструкции ДНК. М.: Радиотехника, 2008. 296 с.
  22. 22. Kolyvanova M. A., Klimovich M. A., Shibaeva A. V. et al. // Liq. Cryst. 2022. V. 49. № 10. P. 1359. https://doi.org/10.1080/02678292.2022.2032854
  23. 23. Kolyvanova M. A., Klimovich M. A., Belousov A. V. et al. // Photonics. 2022. V. 9. № 11. P. 787. https://doi.org/10.3390/photonics9110787
  24. 24. Ouameur A. A., Tajmir-Riahi H. A. // J. Biol. Chem. 2004. V. 279. № 40. P. 42041. https://doi.org/10.1074/jbc.M406053200
  25. 25. Zipper H., Brunner H., Bernhagen J. et al. // Nucleic Acids Res. 2004. V. 32. № 12. P. e103. https://doi.org/10.1093/nar/gnh101
  26. 26. Morozov V. N., Klimovich M. A., Kostyukov A. A. et al. // J. Lumin. 2022. V. 252. P. 119381. https://doi.org/10.1016/j.jlumin.2022.119381
  27. 27. Климович М. А., Колыванова М. А., Дементьева О. В. и др. // Коллоидный журнал. 2023. Т. 85. № 5. С. 583. https://doi.org/10.31857/s0023291223600542
  28. 28. Armitage B. A. Cyanine dye–DNA interactions: intercalation, groove binding, and aggregation. In: Waring M. J., Chaires J. B. DNA Binders and related subjects. Springer, Berlin, 2005, pp. 55–76. https://doi.org/10.1007/b100442
  29. 29. Dragan A. I., Pavlovic R., McGivney J. B. et al. // J. Fluoresc. 2012. V. 22. P. 1189. https://doi.org/10.1007/s10895-012-1059-8
  30. 30. Cosa G., Focsaneanu K. S., McLean J. R. et al. // Photochem. Photobiol. 2001. V. 73. № 6. P. 585. https://doi.org/10.1562/0031-8655 (2001)0732.0.co;2
  31. 31. Saarnio V. K., Alaranta J. M., Lahtinen T. M. // J. Mater. Chem. B. 2021. V. 9. № 16. P. 3484. https://doi.org/10.1039/d1tb00312g
  32. 32. Alaranta J. M., Truong K. N., Matus M. F. et al. // Dyes Pigm. 2023. V. 208. P. 110844. https://doi.org/10.1016/j.dyepig.2022.110844
  33. 33. Miller S. E., Taillon-Miller P., Kwok P. Y. // Biotechniques. 1999. V. 27. № 1. P. 34. https://doi.org/10.2144/99271bm05
  34. 34. Noble R. T., Fuhrman J. A. // Aquat. Microb. Ecol. 1998. V. 14. P. 113. https://doi.org/10.3354/ame014113
  35. 35. Ririe K. M., Rasmussen R. P., Wittwer C. T. // Anal. Biochem. 1997. V. 245. № 2. P. 154. https://doi.org/10.1006/abio.1996.9916
  36. 36. Marie D., Partensky F., Jacquet S. et al. // Appl. Environ. Microbiol. 1997. V. 63. № 1. P. 186. https://doi.org/10.1128/aem.63.1.186-193.1997
  37. 37. Кудряшов Ю. Б. Радиационная биофизика (ионизирующие излучения). М.: ФИЗМАТЛИТ, 2004. 448 с.
  38. 38. Clark G. L., Bierstedt Jr. P. E. // Radiat. Res. 1955. V. 2. № 3. P. 199. https://doi.org/10.2307/3570248
  39. 39. El-Assy N. B., El-Wakeel E. I., Abdel Fattah A. A. // Int. J. Rad. Appl. Instrum. A. 1991. V. 42. № 1. P. 89. https://doi.org/10.1016/0883-2889 (91)90129-o
  40. 40. Chen Y. P., Liu S. Y., Yu H. Q. et al. // Chemosphere. 2008. V. 72. № 4. P. 532. https://doi.org/10.1016/j.chemosphere.2008.03.054
  41. 41. Teif V. B., Bohinc K. // Prog. Biophys. Mol. Biol. 2011. V. 105. № 3. P. 208. https://doi.org/10.1016/j.pbiomolbio.2010.07.002
  42. 42. Tankovskaia S. A., Kotb O. M., Dommes O. A. et al. // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018. V. 200. P. 85. https://doi.org/10.1016/j.saa.2018.04.011
  43. 43. Beshir W. B., Eid S., Gafar S. M. et al. // Appl. Radiat. Isot. 2014. V. 89. P. 13. https://doi.org/10.1016/j.apradiso.2013.11.030
  44. 44. Denison L., Haigh A., D’Cunha G. et al. // Int. J. Radiat. Biol. 1992. V. 61. № 1. P. 69. https://doi.org/10.1080/09553009214550641
  45. 45. Begusová M., Spotheim-Maurizot M., Michalik V. et al. // Int. J. Radiat. Biol. 2000. V. 76. № 1. P. 1. https://doi.org/10.1080/095530000138952
  46. 46. Eberhardt M. K., Colina R. // J. Org. Chem. 1988. V. 53. № 5. P. 1071. https://doi.org/10.1021/jo00240a025
  47. 47. Babbs C. F., Griffin D. W. // Free Radic. Biol. Med. 1989. V. 6. № 5. P. 493. https://doi.org/10.1016/0891-5849 (89)90042-7
  48. 48. Baldock D., Nebe-von-Caron G., Bongaerts R. et al. // Methods Appl. Fluoresc. 2013. V. 1. № 4. P. 045001. https://doi.org/10.1088/2050-6120/1/4/045001
  49. 49. Jordan C. F., Lerman L. S., Venable J. H. // Nat. New Biol. 1972. V. 236. № 64. P. 67. https://doi.org/10.1038/newbio236067a0
  50. 50. Евдокимов Ю. М., Скуридин С. Г., Салянов В. И. и др. // Биофизика. 2015. Т. 60. № 5. С. 861.
  51. 51. Ellestad G. A. Drug and natural product binding to nucleic acids analyzed by electronic circular dichroism. In: Berova N., Polavarapu P. L., Nakanishi K., Woody R. W. Comprehensive chiroptical spectroscopy: applications in stereochemical analysis of synthetic compounds, natural products, and biomolecules. Volume 2. John Wiley & Sons, Inc., New Jersey, 2012, pp. 635–664. https://doi.org/10.1002/9781118120392.ch20
  52. 52. Иванов А. А., Салянов В. И., Стрельцов С. А. и др. // Биоорганическая химия. 2011. Т. 37. № 4. С. 530.
  53. 53. Коваль В. С., Иванов А. А., Салянов В. И. и др. // Биоорганическая химия. 2017. Т. 43. № 2. С. 167. https://doi.org/10.7868/s0132342317020105
  54. 54. Koval V. S., Arutyunyan A. F., Salyanov V. I. et al. // Bioorg. Med. Chem. 2020. V. 28. № 7. P. 115378. https://doi.org/10.1016/j.bmc.2020.115378
  55. 55. Морозов В. Н., Климович М. А., Колыванова М. А. и др. // Химия высоких энергий. 2021. Т. 55. № 5. С. 339. https://doi.org/10.31857/s0023119321050089
  56. 56. Morozov V. N., Klimovich M. A., Shibaeva A. V. et al. // Int. J. Mol. Sci. 2023. V. 24. № 14. P. 11365. https://doi.org/10.3390/ijms241411365
  57. 57. Колыванова М. А., Климович М. А., Шишмакова Е. М. и др. // Коллоидный журнал. 2024. Т. 86. № 3. С. 344. https://doi.org/10.31857/s0023291224030049
  58. 58. Колыванова М. А., Белоусов А. В., Кузьмин В. А. и др. // Химия высоких энергий. 2022. Т. 56. № 5. С. 416. https://doi.org/10.31857/s0023119322050072
  59. 59. Morozov V. N., Kolyvanova M. A., Dement’eva O. V. et al. // J. Lumin. 2020. V. 219. P. 116898. https://doi.org/10.1016/j.jlumin.2019.116898
  60. 60. Keller D., Bustamante C. // J. Chem. Phys. 1986. V. 84. № 6. P. 2972. https://doi.org/10.1063/1.450278
  61. 61. Barzda V., Mustárdy L., Garab G. // Biochemistry. 1994. V. 33. № 35. P. 10837. https://doi.org/10.1021/bi00201a034
  62. 62. Yevdokimov Y. M., Skuridin S. G., Semenov S. V. et al. // J. Biol. Phys. 2017. V. 43. № 1. P. 45. https://doi.org/10.1007/s10867-016-9433-4
  63. 63. Hur J. H., Lee A. R., Yoo W. et al. // FEBS Lett. 2019. V. 593. № 18. P. 2628. https://doi.org/10.1002/1873-3468.13513
  64. 64. Alexander P., Charlesby A. // J. Polym. Sci. 1957. V. 23. № 103. P. 355. https://doi.org/10.1002/pol.1957.1202310331
  65. 65. Sakurada I., Ikad Y. // Bull. Inst. Chem. Res., Kyoto Univ. 1963. V. 41. № 1. P. 103.
  66. 66. Wang B., Kodama M., Mukataka S. et al. // Polym. Gels Networks. 1998. V. 6. № 1. P. 71. https://doi.org/10.1016/s0966-7822 (98)00003-3
  67. 67. Sidorova N. Y., Rau D. C. // Biopolymers. 1995. V. 35. № 4. P. 377. https://doi.org/10.1002/bip.360350405
  68. 68. Qu X., Chaires J. B. // J. Am. Chem. Soc. 2001. V. 123. № 1. P. 1. https://doi.org/10.1021/ja002793v
  69. 69. Degtyareva N. N., Wallace B. D., Bryant A. R. et al. // Biophys. J. 2007. V. 92. № 3. P. 959. https://doi.org/10.1529/biophysj.106.097451
  70. 70. Yu H., Ren J., Chaires J. B. et al. // J. Med. Chem. 2008. V. 51. № 19. P. 5909. https://doi.org/10.1021/jm800826y
  71. 71. Timasheff S. N. // Proc. Natl. Acad. Sci. USA. 1998. V. 95. № 13. P. 7363. https://doi.org/10.1073/pnas.95.13.7363
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library