RAS Chemistry & Material ScienceХимия высоких энергий High Energy Chemistry

  • ISSN (Print) 0023-1193
  • ISSN (Online) 3034-6088

OXIDATION OF UNSYMMETRICAL DIMETHYLHYDRAZINE BY TRIPLET NITRO COMPOUNDS

PII
S30346088S0023119325050033-1
DOI
10.7868/S3034608825050033
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 5
Pages
317-321
Abstract
The transfer of one of the oxygen atoms of nitro compound molecules in the T1 state to one of the nitrogen atoms of unsymmetrical dimethylhydrazine molecule in the S0 state has been studied using the B3LYP/6-311G+(d) quantum chemical method. This process is one of the possible routes for photochemical oxidation of nitrogen-containing compounds by nitro compounds. Two possible reaction variants with attack on the N-dimethyl nitrogen atom (1) and the nitrogen atom of the hydrazine group (2) have been considered. Quantum chemical calculations show that such reactions are possible due to relatively low Gibbs energy. The corresponding values lie in the range of 99–111 kJ/mol for reaction (1) and 136–123 kJ/mol for reaction (2). Calculations of spin densities on atoms in the transition state show that there is no significant change in the distribution of spin density on the atoms of the reaction center. The obtained data may indicate a biradical character of the process. It has been concluded that the oxygen transfer reaction to the nitrogen atom with dimethyl substituents is energetically more favorable.
Keywords
фотохимия нитросоединения несимметричный диметилгидразин квантовая химия триплетное состояние
Date of publication
01.05.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Fawi, M., Abd F. M., Latif El. Solar and ultraviolet N-dealkylation of N,N-dimethylaminobenzylidene malonic acid derivatives viz photoexcited polycyclic nitroaromatic compounds // J. Photochem. Photobiol. A: Chemistry. 2001. V. 141. P. 241–245.
  2. 2. Hurley, R., Testa, A.C. // J. Am. Chem. Soc. 1968. V. 90. № 8. P. 1949.
  3. 3. Noble M., Qian C. X.W., Reisler H., Wittig C. // J. Chem. Phys. 1986. V. 85. № 10. P. 5763.
  4. 4. Toniolo A., Persico M. // J. Chem. Phys. 2001. V. 115. № 4. P. 1817.
  5. 5. Sarkar R., Loos P.-F., Boggio-Pasqua M., Jacquemin D. // J. Chem. Theory Comput. 2022. V. 18. № 4. P. 2418.
  6. 6. Ovsyannikov D. V., Zelentsov S. V. // High Energy Chem. 2019. V. 52. № 3. P. 217.
  7. 7. Ovsyannikov D. V., Zelentsov S. V. // High Energy Chem. 2019. Vol. 53. № 2. P. 103.
  8. 8. Zelentsov S. V., Ovsyannikov D. V., Pyslaru A. // High Energy Chem. 2023. V. 57. № 4. P. 271.
  9. 9. Чайникова Е. М., Хурсан С. Л., Сафиулин Р. Л. // Химия нитрозооксидов. М.: РАН, 2023. С. 174, табл. 36, илл. 29.
  10. 10. Frisch M. J., Trucks G. W., Schlegel H. B., Gill P. M.W., Johnson B. G., Robb M. A., Cheeseman J. R., Keith T. A., Petersson G. A., Montgomery J. A., Raghavachari K., Al-Laham M.A., Zakrzewski V. G., Ortiz J. V., Foresman J. B., Cioslowski J., Stefanov B. B., Nanayakkara A., Challacombe M., Peng C. Y., Ayala P. Y., Chen W., Wong M. W., Andres J. L., Replogle E. S., Gomperts R., Martin R. L., Fox D. J., Binkley J. S., Defrees D. J., Baker J., Stewart J. J.P., Head-Gordon M., Gonzalez C., Pople J. A. Gaussian 03, Revision A.1. Pittsburgh, PA: Gaussian Inc., 2003.
  11. 11. Plekhovich S. D., Zelentsova S. V., Minasyan Yu.V., Degtyarenko A. I. Quantum-Chemical Modeling of Photochemical Reaction between Nitromethane and Olefins to Form Olefin Oxides // High Energy Chem. 2023. V. 127. № 10. P. 2345–2356.
  12. 12. Peng G., Ayala P. Y., Schlegel H. B., Frisch M. J. // J. Comput. Chem. 1996. V. 17. № 1. P. 49.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library