RAS Chemistry & Material ScienceХимия высоких энергий High Energy Chemistry

  • ISSN (Print) 0023-1193
  • ISSN (Online) 3034-6088

CARBON DIOXIDE REFORMING OF METHANE IN A DC GLOW DISCHARGE AT ATMOSPHERIC PRESSURE

PII
S30346088S0023119325040147-1
DOI
10.7868/S3034608825040147
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 4
Pages
291-296
Abstract
A DC discharge in a mixture of CO2 and CH4 at atmospheric pressure was studied at different ratios of CO2 and CH4 at the input and different polarities of the applied voltage. It was shown that when the cathode is located in the region of gas supply to the discharge at a gas flow rate ratio at the input of CO2/CH4 = 1, sparking of the discharge is observed in the discharge, which is associated with the intense formation of a solid phase from carbon-containing particles. The degree of decomposition of CH4 is about 95%, and the degree of decomposition of CO2 is within 85–95% and decreases with increasing concentration of CO2 in the mixture. The ratio of concentrations of H2 and CO at the discharge output can be controlled by the ratio of consumption of CO2 and CH4 at the discharge input.
Keywords
тлеющий разряд атмосферного давления разряд постоянного тока разряд в смеси метана и углекислого газа углекислотный риформинг метана хроматография газовых продуктов
Date of publication
01.04.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Snoeckx R., Bogaerts A. // Chem. Soc. Rev. 2017. 46. 5805.
  2. 2. George A., Shen B., Craven M. et al. // Renewable and Sustainable Energy Reviews. 2021. V. 135. P. 109702.
  3. 3. Trenchev G., Nikiforov A., Wang W. et al. // Chemical Engineering Journal. 2019. V. 362. P. 830–841.
  4. 4. Bongers W., Bouwmeester H., Wolf B. et al. // Plasma Process Polym. 2017. V. 14. № 6. P. 1600126.
  5. 5. Liu C.J., Xu G.H., Wang T. // Fuel Processing Technology. 1999. V. 58. № 2-3. P. 119–134.
  6. 6. Pacheco J., Soria G., Pacheco M. et al. // International journal of hydrogen energy. 2015. V. 40. № 48. P. 17165–17171.
  7. 7. Ikeda A., Hunge Y.M., Teshima K. et al. // Energy Fuels. 2024. V. 38. P. 11918–11926.
  8. 8. Batukaev T.S., Bilera I.V., Krashevskaya G.V., et al. // Plasma. 2023. V. 6. P. 115–126.
  9. 9. Deminsky M., Jivotov V., Potapkin B., Rusanov V. // Pure Appl. Chem. 2002. V. 74. № 3. P. 413–418.
  10. 10. Бабарицкий А.И., Баранов Е.И., Демкин С.А. и др. // Химия Высоких Энергий. 1999. T. 33. № 6. C. 458–463.
  11. 11. Животов В.К., Потапкин Б.В., Русанов В.Д. Энциклопедия низкотемпературной плазмы, Тематический том VIII–1 Химия / Под ред. Лебедева Ю.А., Платэ Н.А., Фортова В.Е. М.: Янус-К, 2005. 4–36 с.
  12. 12. Amin M.H. // Progress Petrochem. Sci. 2018. V. 2. № 2. P. 161–165.
  13. 13. Usman M., Daud W.W., Abbas H.F. // Renewable and Sustainable Energy Reviews. 2015. V. 45. P. 710–744.
  14. 14. Abiev R.Sh., Sladkovskiy D.A., Semikin K.V. et al. // Catalysts. 2020. V. 10. P. 1358.
  15. 15. De Vasconcelos B.R., Lavoie J.M. // Int. J. of Energy Prod. & Mgmt. 2018. V. 3. P. 44.
  16. 16. Курина Л.Н., Аркатова Л.А., Харламова Т.С. и др. // Успехи современного естествознания. 2006. № 4. С. 55.
  17. 17. Hussien A.G.S., Polychronopoulou K. // Nanomaterials. 2022. V. 12. P. 3400.
  18. 18. Muraza O., Galadima A. // Int. J. Energy Res. 2015. V. 39. P. 1196–1216.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library