RAS Chemistry & Material ScienceХимия высоких энергий High Energy Chemistry

  • ISSN (Print) 0023-1193
  • ISSN (Online) 3034-6088

EPR SPECTRA AND ANTIOXIDANT ACTIVITY OF GAMMA-IRRADIATED PAPAIN

PII
S30346088S0023119325040078-1
DOI
10.7868/S3034608825040078
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 4
Pages
235-243
Abstract
The structure and number of paramagnetic centers (PC) stabilized in papain γ-irradiated with a dose of 50 to 2300 kGy were studied using EPR spectroscopy. The radiation yield G≈6 PC/100 eV during radiolysis at 77 K is six times greater than the PC yield in the samples irradiated at 300 K. During radiolysis at 300 K, the maximum concentration of PC is achieved at doses of 200 kGy at a level of 8 × 1018 PC/g, whereas in papain radiolyzed at 77 K they accumulate up to 2300 kGy and reach 2.2 × 1020 PC/g. During papain radiolysis at 77 K, the cleavage of the peptide bond prevails over the cleavage of bonds in the molecular groups of amino acid residues, including sulfur-containing ones. As a result, radicals are mainly recorded in the EPR spectra. In the multicomponent spectrum of papain irradiated at 300 K, a doublet with splittings of 1.77 mT is distinguished, attributed to the radical formed by the abstraction of hydrogen from the glycine residue. Peroxide radicals formed during radiation oxidation at 300 K are not retained in the matrix of irradiated papain as stabilized radicals and, most likely, participate in secondary radiation-chemical processes with the formation of oxygen-containing products. A tendency for the antiradical and antioxidant activity of papain to increase with increasing radiation dose is noted as a result of radiation destruction of the peptide bond with the formation of amino acid fragments that are donors of a hydrogen atom.
Keywords
папаин γ-облучение спектры ЭПР антиоксидантная активность
Date of publication
01.04.2025
Year of publication
2025
Number of purchasers
0
Views
19

References

  1. 1. Amri E., Mamboya F. // Am. J. Biochem. Biotechnol. 2012, V. 8. P. 99.
  2. 2. Kamphuis I., Kalk K., Swarte M., Drenth J.J. // Mol. Biol. 1984. V. 179. P. 233.
  3. 3. O´Neil M.J. The Merck index: an encyclopedia of chemicals, drugs, and biologicals, 13th Edition, Whitehouse Station, NJ: Merck, 2001.
  4. 4. https://web.archive.org/web/20140715224627/http://www.biozym.de/datasheets/papain.php
  5. 5. Menard R., Khouri H.E., Plouffe C., Dupras R., Ripoll D. // Biochemistry. 1990. V. 29. P. 6706.
  6. 6. Tsuge H., Nishimura T., Tada Y., Asao T., Turk D. // Journal of Biochemicaland Biophysical Research Communications. 1999. V. 266. P. 411.
  7. 7. Guo Z., Mcgill A., Yu L., Li J., Ramirez J., Wang P.G. // Bioorg. Med. Chem. Lett. 1996. V. 6. P. 573.
  8. 8. Xian M., Chen X., Liu Z., Wang K., Wang P.G. // Journal of Biological Chemistry. 2000. V. 275. P. 20467.
  9. 9. Varca G.H.C., Kadlubowski S., Wolszczak M., Lugão A.B., Rosiak J.M., Ulanski P. // Journal of Biolog. Macromolecules. 2016. V. 92. P. 654.
  10. 10. Аллаяров С.Р., Руднева Т.Н., Демидов С.В., Аллаярова У.Ю., Чекалина С.Д. // Химия высоких энергий. 2024. Т. 58. № 5. С. 397.
  11. 11. Аллаярова У.Ю., Демидов С.В., Блохина С.В., Раевская Т.А., Мищенко Д.В., Омельчук Ю.А., Аллаяров С.Р. // Химия высоких энергий. 2024. Т. 58. № 5. С. 404.
  12. 12. Varca G.H.C., Ferraz C.C.F., Lopes P.S., Mathor M.B., Grasselli M., Lugão A.B. // Radiation Physics and Chemistry. 2014. V. 94. P. 181.
  13. 13. Kedare S.B., Singh R.P. // J Food Sci Technol. 2011. V. 48. P. 412.
  14. 14. Ohkawa N. Ohishi K., Yagi K. // Anal. Biochem. 1979. V. 95. P. 351.
  15. 15. Шарпатый В.А. Радиационная химия биополимеров. М.: Энергоиздат, 1981. С.72.
  16. 16. Sevilla M.D., D’Arcy J.B., Morehouse K.M. // J. Phys. Chem. 1979. V.83. P. 2893.
  17. 17. Пшежецкий С.Я., Котов А.Г., Милинчук В.К., Рогинский В.А., Тупиков В.И. ЭПР свободных радикалов в радиационной химии ЭПР свободных радикалов в радиационной химии. М.: Химия, 1972. С. 309.
  18. 18. Усатый А.Ф., Лазуркин Ю.С. Элементарные процессы химии высоких энергий. М.: Наука, 1965. С. 209.
  19. 19. Garrison W.M., Jayko M.E., Rodgers A.J., Sokol H.A., Bennett-Corniea W. Washington, DC: The National Academies Press, 1968. P. 384.
  20. 20. Кузина С.И., Аллаяров С.Р. // Химия высоких энергий. 2023. Т. 57. С. 384.
  21. 21. Snipes W., Horan P.K. // Radiat. Res. 1967. V. 30. P. 307.
  22. 22. Henriksen T. Electron spin resonance and effects of radiation on biological systems. Washington, DC: The National Academies Press, 1966. Р. 81.
  23. 23. Каюшин Л.П., Львов К.М., Пулатова М.К. Исследование парамагнитных центров облученных белков, М.: Наука, 1970. С. 174.
  24. 24. Милинчук В.К., Клиншпонт Э.Р., Пшежецкий С.Я. Макрорадикалы. М.: Химия, 1980. 264 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library