RAS Chemistry & Material ScienceХимия высоких энергий High Energy Chemistry

  • ISSN (Print) 0023-1193
  • ISSN (Online) 3034-6088

Photophysical properties of pyrene-containing biphotocromic dyads and corresponding cyclobutanes formed from dyads in the [2+2] photocycloaddition reaction

PII
S30346088S0023119325040018-1
DOI
10.7868/S3034608825040018
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 4
Pages
189-200
Abstract
The photophysical properties of biphotochromic dyads DoX and D10 containing two identical photochromes, 2-[2-(pyrene-1-yl)ethenyl]-quinoline (PEQ), linked by bridge groups of different lengths, as well as the corresponding dipyrenylcyclobutanes CBoX and CB10 formed from the dyads in the [2+2] photocycloaddition reaction (PCA) have been investigated by time-resolved emission spectroscopy (TRES). On the basis of TRES, the number of emitters was determined, their emission spectra, excited state lifetimes, and rate constants of competitive physical and chemical processes (emission, energy transfer, and reactions) were calculated. In dyads, the formation of excimers, possible intermediates of the PCA reaction, was detected by the appearance of emitters with lifetimes significantly increased compared to the model PEQ-photochrome. In cyclobutanes, a decrease in the lifetime of pyrene substituents as compared to 1-methylpyrene shows the energy transfer from substituents to the cyclobutane ring, which, according to the predissociation mechanism, initiates the ring-opening reaction (retro-PCA). In addition, CBoX shows the presence of non-emitting conformers. Quantum chemical calculations by DFT method confirmed the possibility of formation of different conformers of cyclobutane CBoX, differing in the relative position of pyrenyl substituents and the degree of their interaction with each other.
Keywords
диарилэтилен бифотохромная диада флуоресценция время-разрешенная эмиссионная спектроскопия (TRES) константа скорости перенос энергии [2+2]-фотоциклоприсоединение циклобутан предиссоциация пирен DFT расчеты
Date of publication
01.04.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. Liang C.K., Desvergne J.P., Bassani D.M. // Photochem. Photobiol. Sci. 2014. V. 13. P. 316.
  2. 2. Perrier A., Maurel F., Jacquemin D. // Acc. Chem. Res. 2012. V. 45. P. 1173.
  3. 3. Kirkus M., Janssen R.A. J., Meskers S.C. J. // J. Phys. Chem. A. 2013. V. 17. P. 4828.
  4. 4. Margulies E.A., Shoer L.E., Eaton S.W., Wasielewski M.R. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 23735.
  5. 5. Long S., Wang Y., Vdovic S., Zhou M., Yan L., Niu Y., Guo Q., Xia A. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 18567.
  6. 6. Cho D.W., Fujitsuka M., Sugimoto A., Majima T. // J. Phys. Chem. A. 2008. V. 112. P. 7208.
  7. 7. Wang S., Bohnsack M., Megow S., Renth F., Temps F. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 2080.
  8. 8. Kucukoz B., Adinarayana B., Osuka A., Albinsson B. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 16477.
  9. 9. Letrun R., Lang B., Yushchenko O., Wilcken R., Svechkarev D., Kolodieznyi D., Riedle E., Vauthey E. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 30219.
  10. 10. Chahal M.K., Liyanage A., Gobeze H.B., Payne D.T., Ariga K., Hill J.P., D’Souza F. // Chem. Commun. 2020. V. 56. P. 3855.
  11. 11. Doddi S., Ramakrishna B., Venkatesha Y., Bangl P.R. // RSC Adv. 2015. V. 5. P. 56855.
  12. 12. Kim D., Park S.Y. // Optical Mater. 2018. 1800678.
  13. 13. Szacilowski K. // Chem. Rev. 2008. V. 108. P. 3481.
  14. 14. Будыка М.Ф. // Успехи химии. 2017. Т. 86. С. 181.
  15. 15. Andreasson J., Pischel U. // Coord. Chem. Rev. 2021. V. 429. 213695.
  16. 16. Будыка М.Ф., Поташова Н.И., Гавришова Т.Н., Ли В.М., Гак В.Ю., Гринева И.А. // Химия высоких энергий. 2018. Т. 52. С. 204.
  17. 17. Будыка М.Ф., Ли В.М., Гавришова Т.Н. // Химия высоких энергий. 2024. Т. 58. С. 77.
  18. 18. Будыка М.Ф., Ли В.М., Гавришова Т.Н. // Химия высоких энергий. 2025. Т. 59. С. 26.
  19. 19. Budyka M.F., Gavrishova T.N., Li V.M., Potashova N.I., Fedulova J.A. // Spectrochim. Acta Part A. 2022. V. 267. 120565.
  20. 20. Budyka M.F., Fedulova J.A., Gavrishova T.N., Li V.M., Potashova N.I., Tovstun S.A. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 24137.
  21. 21. Будыка М.Ф., Гавришова Т.Н., Ли В.М., Дозморов С.А. // Изв. АН. Сер. хим. 2023. Т. 72. С. 2013.
  22. 22. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT, 2013.
  23. 23. Mazzucato U., Momicchioli F. // Chem. Rev. 1991. V. 91. P. 1679.
  24. 24. Schillmoller T., Herbst-Irmer R., Stalke D. // Adv. Optical Mater. 2021. V. 9. 2001814.
  25. 25. Будыка М.Ф. // Успехи химии. 2012. Т. 81. С. 477.
  26. 26. Ellsei F., Aloisi G.G., Latterini L., Galiazzo G., Gorner H. // J. Chem. Soc. Faraday Trans. 1995. V. 91. P. 3117.
  27. 27. Kovalenko N.P., Abdukadirov A., Gerko V.I., Alfimov M.V. // J. Photochem. 1980. V. 12. P. 59.
  28. 28. Doi T., Kawai H., Murayama K., Kashida H., Asanuma H. // Chem. Eur. J. 2016. V. 22. P. 10533.
  29. 29. Truong V.X., Li F., Ercole F., Forsythe J.S. // ACS Macro Lett. 2018. V. 7. P. 464.
  30. 30. Budyka M.F., Gavrishova T.N., Li V.M., Potashova N.I., Ushakov E.N. // ChemistrySelect. 2021. V. 6. P. 3218.
  31. 31. Winnik F.M. // Chem. Rev. 1993. V. 93. P. 587.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library