RAS Chemistry & Material ScienceХимия высоких энергий High Energy Chemistry

  • ISSN (Print) 0023-1193
  • ISSN (Online) 3034-6088

MECHANISM OF PHENYLALANINE DESTRUCTION UNDER THE INFLUENCE OF UV RADIATION AND REACTIVE OXYGEN SPECIES

PII
S30346088S0023119325030055-1
DOI
10.7868/S3034608825030055
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 3
Pages
167-173
Abstract
The degradation of phenylalanine in an acidic aqueous solution (pH 3) with a concentration of 1.33 × 10 mol/L under the action of UV radiation of a 253.7 nm mercury lamp, hydroxyl radicals generated by cold plasma of a corona electric discharge, and hydroperoxyl radicals formed in water under the action of pulsed radiation of a hot plasma was studied. The degradation product identified by the fluorescence method is tyrosine. The quantum yields of phenylalanine degradation and tyrosine formation in solutions saturated and depleted in atmospheric oxygen were determined. Possible reaction mechanisms were considered.
Keywords
фенилаланин тирозин радикал OH радикал HO УФ-излучение квантовый выход
Date of publication
01.03.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Bruggeman P., Locke B.R., Gardenies H. et al. (41 authors) // Plasma Sources Sci. Technol. 2016. V. 25. 053002.
  2. 2. Locke B.R., Mededovic S., Lukes P. // Plasma Process and Polymers. 2024. e2400207. https://doi.org/10.1002/ppap.202400207
  3. 3. Matthews D.E. // J. Nutrition. 2007. V. 137. 1549S. Шлапакова Т.И., Костин Р.К., Тягунова Е.Е. // Био­органическая химия. 2020. Т. 46. № 5. С. 466.
  4. 4. Griffits H.R., Moller L., Bartosz G. et al. // Mol. Aspects Med. 2002. V. 23. P. 101.
  5. 5. Fitzpatrick P.F. // Biochemistry. 2003. V. 12. № 48. P. 14083.
  6. 6. Hsu J.W., Jahoop F., Butte N.F., Heird W.C. // Pediat. Res. 2011. V. 69. № 4. P. 341.
  7. 7. Srivastava A., Srivastava N., Dohare R.K. // J. Phys. Org. Chem. 2024. https://doi.org/10.1002/poc.4669
  8. 8. Pattison D.I., Rahmanto A.S., Davies M.J. // Photochem. Photobiol. Sci. 2012. V. 11. P. 38.
  9. 9. Weng Y., Su C-J., Jiang H., Chiang C.-W. // Sci. Rep. 2022. V. 8. № 12. 18994. https://doi.org/10.1038/s41598-022-23481-6
  10. 10. Salmahaminati, Roca-Sanjuan D. // ACS Omega. 2024. V. 9. P. 35356.
  11. 11. Scappini F., Capobianco F., Casadei R. et al. // Int. J. of Astrobiol. 2007. V. 6. P. 4.
  12. 12. Jin F., Leitich J., von Sonntag C. // J. of Photochem. Photobiol. A: Chemistry. 1995. V. 85. P. 101.
  13. 13. Kopec K., Ryzko A., Major R. et al. // ACS Omega. 2022. V. 7. 39234.
  14. 14. Tatsuno I., Niimi Y., Tomita M. et al. // Sci. Rep. 2021. V. 11. P. 22310. https://doi.org/10.1038/541598-021-01543-5
  15. 15. Rosenzweig Z., Garcia J., Thompson G.L., Perez L.J. // PLoS ONE. 2024. V. 19. № 11. E0311232.
  16. 16. Piskarev I.M. // High Energy Chem. 2024. V. 58. № 5. P. 480.
  17. 17. Коновалов В.П., Сон Э.Е. Химия плазмы / под ред. Е.М. Смирнова. М. Энергоатомиздат, 1987. Вып. 14. С. 194.
  18. 18. Александров Н.П., Высикайло Ф.И., Исламов Р.Ш. и др. // Теплофизика высоких температур. 1981. Т. 19. № 1. С. 22.
  19. 19. Piskarev I.M. // Res. J. Pharm. Biol. Chem. Sci. 2016. V. 7. № 4. P. 1171.
  20. 20. Пискарев И.М. // Химия высоких энергий. 2016. Т. 50. № 5. С. 449.
  21. 21. Пикаев А.К. Современная радиационная химия. Радиолиз газов и жидкостей. М.: Наука, 1986.
  22. 22. Luo Yu-Ran. Handbook of bond dissociation energies in organic compounds. Boca Raton, London, New York, Washington: CRC Press LLC, 2003. P. 1–94.
  23. 23. Рыбакова Л.П., Алексанян Л.Р., Капустин С.И., Бессмельцев С.С. // Вестник гематологии. 2022. Т. 18. № 4. С. 26.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library