- PII
- S0023119325020094-1
- DOI
- 10.31857/S0023119325020094
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 59 / Issue number 2
- Pages
- 129-135
- Abstract
- The kinetics of formation of insoluble nickel hydroxocompounds initiated by the action of direct current discharge of atmospheric pressure in air on Ni(NO) • 6HO aqueous solutions has been studied. It was found that these compounds are formed as colloidal systems only when the solution is the anode of the discharge. In the case when the solution serves as a cathode, the formation of colloidal solutions is not observed. The investigated range of solution concentrations was 20-60 mmol/L and discharge currents were 20-60 ma. It was found that the kinetics of Ni ions concentration loss was concentration dependent (zero/first kinetic order of the reaction) and independent of the discharge current. The rate constants and rate of loss of Ni ions, their conversion degrees were determined, and the energy efficiency of the ion conversion process was found. The conversion degree and energy efficiency depended on the discharge current and initial concentration and were 4-25% and 0.1-0.5 ions per 100 eV, respectively. X-ray diffraction studies showed that the precipitates formed were Ni(OH) powder, and its calcination leads to the formation of crystalline β-NiO.
- Keywords
- плазма раствор оксид никеля кинетика
- Date of publication
- 21.11.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 20
References
- 1. He J., Lindström H., Hagfeldt A., Lindquist S.E. // J. Phys. Chem. B. 1999. V. 103. № 42. P. 8940; https://doi.org/10.1021/jp991681r
- 2. Hotovy I., Huran J., Siess L. // Sens. actuators B Chem. 1999. V. 57. № 1-3. P. 147; https://doi.org/10.1016/S0042-207X (00)00182-2
- 3. Tao D., Wei F. // mater. Lett. 2004. V. 58. P. 3226; https://doi.org/10.1016/j.matlet.2004.06.015
- 4. Shibli S.M.A., Beenakumari K.S., Suma N.D. // Biosens. Bioelectron. 2006. V. 22. № 5. P. 633; https://doi.org/10.1016/j.bios.2006.01.020
- 5. Mu Y., Jia D., He Y., Miao Y., Wu H.L. // Biosens. Bioelectron, 2011. V. 26. № 6. P. 2948; https://doi.org/10.1016/j.bios.2010.11.042
- 6. Jiao Z., Wu M., Qin Z., Xu H. // Nanotechnology. 2003. V. 14. № 4. P. 458; https://doi.org/10.1088/0957-4484/14/4/310
- 7. Verma C., Ebenso E.E., Quraishi M.A. // J. mol. Liq. 2019. V. 276. P. 826; https://doi.org/10.1016/j.molliq.2018.12.063
- 8. Mai Y.J, Shi S.J., Zhang D., Lu Y., Gu C.D., Tu J.P. // J. Power Sources. 2012. V. 204. P. 155; https://doi.org/10.1016/j.jpowsour.2011.12.038
- 9. Sun X., Wang G., Hwang J.Y., Lian J. // J. mater. Chem. 2011. V. 21. № 41. P. 16581; https://doi.org/10.1039/C1Jm12734a
- 10. Ichiyanagi Y., Wakabayashi N., Yamazaki J., Yamada S., Kimishima Y., Komatsu E., Tajima H. // Phys. B: Condens. matter. 2003. V. 329. P. 862; https://doi.org/10.1016/S0921-4526 (02)02578-4
- 11. Kalaie M.R., Youzbashi A.A., Meshkot M.A., Hosseini-Nasab F. // appl. Nanosci. 2016. V. 6. № 6. P. 789; https://doi.org/10.1007/s13204-015-0498-3
- 12. Carnes C.L., Klabunde K.J. // J. mol. Catal a Chem. 2003. V. 194. № 1-2. P. 227; https://doi.org/10.1016/S1381-1169 (02)00525-3
- 13. Kirumakki S.R., Shpeizer B.G, Sagar G.V, Chary K.V.R. // J. Catal. 2006. V. 242. № 2. P. 319; https://doi.org/10.1016/j.jcat.2006.06.014
- 14. Nitta Y., Sekine F., Sasaki J., Imanaka T., Teranishi S. // J. Catal. 1983. V. 79. № 1. P. 211; https://doi.org/10.1016/0021-9517 (83)90305-6
- 15. Fan Q., Liu Y., Zheng Y., Yan W. // Front. Chem. Sci. Eng. 2008. V. 2. № 1. P. 63; https://doi.org/10.1007/s11705-008-0013-4
- 16. Nail B.A., Fields J.M., Zhao J., Wang J., Greaney M.J., Brutchey R.L., Osterloh F.E. // aCS Nano. 2015. V. 9. № 5. P. 5135; https://doi.org/10.1021/acsnano.5b00435
- 17. Liu K.C., Anderson M.A. // J. Electrochem. Soc. 1996. V. 143. P. 124; https://doi.org/10.1149/1.1836396
- 18. Wang Y.D., Ma C.L., Sun X.D., Li H.D. // Inorg. Chem.Commun. 2002. V. 5. P. 751; https://doi.org/10.1016/S1387-7003 (02)00546-4
- 19. Xiang L., Deng X.Y., Jin Y. // Scripta mater. 2002. V. 47. P. 219; https://doi.org/10.1016/S1359-6462 (02)00108-2
- 20. Deki S., Yanagimito H., Hiraoka S. // Chem. mater. 2003. V. 15. P. 4916; https://doi.org/10.1021/cm021754a
- 21. Liu S.F., Wu C.Y., Han X.Z. // Chin. J. Inorg. Chem. 2003. V. 19. P. 624.
- 22. Smirnova K.V., Izvekova A.A., Shutov D.A., Ivanov A.N., Manukyan A.S., Rybkin V.V. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. № 12. P. 112; https://doi.org/10.6060/ivkkt.20226512.6743
- 23. Shutov D.A., Smirnova K.V., Gromov M.V., Rybkin V.V., Ivanov A.N. // Plasma Chem. Plasma Process. 2018. V. 38. № 1. P. 107; https://doi.org/10.1007/s11090-017-9856-0
- 24. Altomare A., Corriero N., Cuocci C., Falcicchio A., Moliterni A., Rizzi R. // J. appl. Cryst. 2015. V. 48. № 2. P. 598 (2015); https://doi.org/10.1107/S1600576715002319
- 25. Grazulis S., Daskevic A., Merkys A., Chateigner D., Lutterotti L., Quiros M. et al. // Nucl. acids res. 2012. V. 40. № D1. P. D420; https://doi.org/10.1093/nar/gkr900
- 26. Bobkova E.S., Rybkin V.V. // Plasma Chem. Plasma Process. 2015. V. 35. № 1. P. 133; https://doi.org/10.1007/s11090-014-9583-8
- 27. Malik M.A. // Plasma Chem. Plasma Process. 2010. V. 30. № 1. P. 21; https://doi.org/10.1007/s11090-009-9202-2
- 28. Lurie Ju. Handbook of analytical Chemistry. mir. moscow. 1978.
- 29. Shutov D.A., Smirrnova K.V., Ivanov A.N., Rybkin V.V. // Plasma Chem. Plasma Process. 2023. V. 43. № 3. P. 557; https://doi.org/10.1007/s11090-023-10322-1
- 30. Shutov D.A., Batova N.A., Smirnova K.V., Ivanov A.N., Rybkin V.V. // J. Phys. D: appl. Phys. 2022. V. 55. № 34. P. 345206; https://doi.org/10.1088/1361-6463/ac74f8