RAS Chemistry & Material ScienceХимия высоких энергий High Energy Chemistry

  • ISSN (Print) 0023-1193
  • ISSN (Online) 3034-6088

KINETIC REGULARITIES OF PLASMA-SOLUTION SYNTHESIS OF NICKEL OXIDE

PII
S0023119325020094-1
DOI
10.31857/S0023119325020094
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 2
Pages
129-135
Abstract
The kinetics of formation of insoluble nickel hydroxocompounds initiated by the action of direct current discharge of atmospheric pressure in air on Ni(NO) • 6HO aqueous solutions has been studied. It was found that these compounds are formed as colloidal systems only when the solution is the anode of the discharge. In the case when the solution serves as a cathode, the formation of colloidal solutions is not observed. The investigated range of solution concentrations was 20-60 mmol/L and discharge currents were 20-60 ma. It was found that the kinetics of Ni ions concentration loss was concentration dependent (zero/first kinetic order of the reaction) and independent of the discharge current. The rate constants and rate of loss of Ni ions, their conversion degrees were determined, and the energy efficiency of the ion conversion process was found. The conversion degree and energy efficiency depended on the discharge current and initial concentration and were 4-25% and 0.1-0.5 ions per 100 eV, respectively. X-ray diffraction studies showed that the precipitates formed were Ni(OH) powder, and its calcination leads to the formation of crystalline β-NiO.
Keywords
плазма раствор оксид никеля кинетика
Date of publication
21.11.2024
Year of publication
2024
Number of purchasers
0
Views
20

References

  1. 1. He J., Lindström H., Hagfeldt A., Lindquist S.E. // J. Phys. Chem. B. 1999. V. 103. № 42. P. 8940; https://doi.org/10.1021/jp991681r
  2. 2. Hotovy I., Huran J., Siess L. // Sens. actuators B Chem. 1999. V. 57. № 1-3. P. 147; https://doi.org/10.1016/S0042-207X (00)00182-2
  3. 3. Tao D., Wei F. // mater. Lett. 2004. V. 58. P. 3226; https://doi.org/10.1016/j.matlet.2004.06.015
  4. 4. Shibli S.M.A., Beenakumari K.S., Suma N.D. // Biosens. Bioelectron. 2006. V. 22. № 5. P. 633; https://doi.org/10.1016/j.bios.2006.01.020
  5. 5. Mu Y., Jia D., He Y., Miao Y., Wu H.L. // Biosens. Bioelectron, 2011. V. 26. № 6. P. 2948; https://doi.org/10.1016/j.bios.2010.11.042
  6. 6. Jiao Z., Wu M., Qin Z., Xu H. // Nanotechnology. 2003. V. 14. № 4. P. 458; https://doi.org/10.1088/0957-4484/14/4/310
  7. 7. Verma C., Ebenso E.E., Quraishi M.A. // J. mol. Liq. 2019. V. 276. P. 826; https://doi.org/10.1016/j.molliq.2018.12.063
  8. 8. Mai Y.J, Shi S.J., Zhang D., Lu Y., Gu C.D., Tu J.P. // J. Power Sources. 2012. V. 204. P. 155; https://doi.org/10.1016/j.jpowsour.2011.12.038
  9. 9. Sun X., Wang G., Hwang J.Y., Lian J. // J. mater. Chem. 2011. V. 21. № 41. P. 16581; https://doi.org/10.1039/C1Jm12734a
  10. 10. Ichiyanagi Y., Wakabayashi N., Yamazaki J., Yamada S., Kimishima Y., Komatsu E., Tajima H. // Phys. B: Condens. matter. 2003. V. 329. P. 862; https://doi.org/10.1016/S0921-4526 (02)02578-4
  11. 11. Kalaie M.R., Youzbashi A.A., Meshkot M.A., Hosseini-Nasab F. // appl. Nanosci. 2016. V. 6. № 6. P. 789; https://doi.org/10.1007/s13204-015-0498-3
  12. 12. Carnes C.L., Klabunde K.J. // J. mol. Catal a Chem. 2003. V. 194. № 1-2. P. 227; https://doi.org/10.1016/S1381-1169 (02)00525-3
  13. 13. Kirumakki S.R., Shpeizer B.G, Sagar G.V, Chary K.V.R. // J. Catal. 2006. V. 242. № 2. P. 319; https://doi.org/10.1016/j.jcat.2006.06.014
  14. 14. Nitta Y., Sekine F., Sasaki J., Imanaka T., Teranishi S. // J. Catal. 1983. V. 79. № 1. P. 211; https://doi.org/10.1016/0021-9517 (83)90305-6
  15. 15. Fan Q., Liu Y., Zheng Y., Yan W. // Front. Chem. Sci. Eng. 2008. V. 2. № 1. P. 63; https://doi.org/10.1007/s11705-008-0013-4
  16. 16. Nail B.A., Fields J.M., Zhao J., Wang J., Greaney M.J., Brutchey R.L., Osterloh F.E. // aCS Nano. 2015. V. 9. № 5. P. 5135; https://doi.org/10.1021/acsnano.5b00435
  17. 17. Liu K.C., Anderson M.A. // J. Electrochem. Soc. 1996. V. 143. P. 124; https://doi.org/10.1149/1.1836396
  18. 18. Wang Y.D., Ma C.L., Sun X.D., Li H.D. // Inorg. Chem.Commun. 2002. V. 5. P. 751; https://doi.org/10.1016/S1387-7003 (02)00546-4
  19. 19. Xiang L., Deng X.Y., Jin Y. // Scripta mater. 2002. V. 47. P. 219; https://doi.org/10.1016/S1359-6462 (02)00108-2
  20. 20. Deki S., Yanagimito H., Hiraoka S. // Chem. mater. 2003. V. 15. P. 4916; https://doi.org/10.1021/cm021754a
  21. 21. Liu S.F., Wu C.Y., Han X.Z. // Chin. J. Inorg. Chem. 2003. V. 19. P. 624.
  22. 22. Smirnova K.V., Izvekova A.A., Shutov D.A., Ivanov A.N., Manukyan A.S., Rybkin V.V. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. № 12. P. 112; https://doi.org/10.6060/ivkkt.20226512.6743
  23. 23. Shutov D.A., Smirnova K.V., Gromov M.V., Rybkin V.V., Ivanov A.N. // Plasma Chem. Plasma Process. 2018. V. 38. № 1. P. 107; https://doi.org/10.1007/s11090-017-9856-0
  24. 24. Altomare A., Corriero N., Cuocci C., Falcicchio A., Moliterni A., Rizzi R. // J. appl. Cryst. 2015. V. 48. № 2. P. 598 (2015); https://doi.org/10.1107/S1600576715002319
  25. 25. Grazulis S., Daskevic A., Merkys A., Chateigner D., Lutterotti L., Quiros M. et al. // Nucl. acids res. 2012. V. 40. № D1. P. D420; https://doi.org/10.1093/nar/gkr900
  26. 26. Bobkova E.S., Rybkin V.V. // Plasma Chem. Plasma Process. 2015. V. 35. № 1. P. 133; https://doi.org/10.1007/s11090-014-9583-8
  27. 27. Malik M.A. // Plasma Chem. Plasma Process. 2010. V. 30. № 1. P. 21; https://doi.org/10.1007/s11090-009-9202-2
  28. 28. Lurie Ju. Handbook of analytical Chemistry. mir. moscow. 1978.
  29. 29. Shutov D.A., Smirrnova K.V., Ivanov A.N., Rybkin V.V. // Plasma Chem. Plasma Process. 2023. V. 43. № 3. P. 557; https://doi.org/10.1007/s11090-023-10322-1
  30. 30. Shutov D.A., Batova N.A., Smirnova K.V., Ivanov A.N., Rybkin V.V. // J. Phys. D: appl. Phys. 2022. V. 55. № 34. P. 345206; https://doi.org/10.1088/1361-6463/ac74f8
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library