RAS Chemistry & Material ScienceХимия высоких энергий High Energy Chemistry

  • ISSN (Print) 0023-1193
  • ISSN (Online) 3034-6088

IMPLICATION OF NUCLEINIC ACIDS ON SPECTRAL PROPERTIES OF SOLVES OF COMPLEXES OF PD(II) AND PT(II) WITH AROMATIC LIGANDS

PII
S0023119325020057-1
DOI
10.31857/S0023119325020057
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 2
Pages
104-110
Abstract
The interaction between nucleic acids (calf thymus DNA and plasmid pCY B3, yeast RNA) and ethylenediamine complexes of Pd(II) and Pt(II) containing aromatic heterocyclic ligands (2,2`-bipyridyl, 1,10-phenanthroline, 2-phenylpyridine, 2-(2`-ethyl)pyridine, 2-phenylpyridine, 2-(2`-ethyl)pyridine) was studied by electron absorption spectroscopy and gel electrophoresis, containing aromatic heterocyclic ligands (2,2`-bipyridyl, 1,10-phenanthroline, 2-phenylpyridine, 2-(2`-thienyl)pyridine, 7,8-benzoquinoline, methyl-2-phenyl-4-quinoline carboxylate, coumarin-6 and Nile red. The applicability of electron absorption spectroscopy to establish the intercalation of organometallic complexes in DNA was demonstrated. Of the investigated complexes, only complexes of Pd(II) with Nile red and coumarin-6 were found to be capable of intensive interaction with RNA. The effective unraveling of the secondary stranding of plasmid DNA detected by gel electrophoresis suggests that these same complexes intercalate into DNA more actively than others.
Keywords
комплексы Pd(II) и Pt(II) РНК ДНК интеркаляция гель-электрофорез
Date of publication
22.11.2024
Year of publication
2024
Number of purchasers
0
Views
18

References

  1. 1. Rosenberg B., van Camp L., Krigas T. // Nature. 1965. V. 205. P. 698; https://doi.org/10.1038/205698a0
  2. 2. Cohen S.M., Lippard S.J. // Prog. Nucleic Acid Res. Mol. Biol. 2001. V. 67. P. 93; https://doi.org/10.1016/s0079-6603 (01)67026-0
  3. 3. Hucke A., Park G.Y., Bauer O.B., Beyer G., Köppen C., Zeeh D. et al. // Front. Chem., Sec. Chem. Biol. 2018. V. 6. P. 1. Article 180; https://doi.org/10.3389/fchem.2018.00180
  4. 4. Din M.I., Ali F., Intisar A. // Revue Roumaine de Chimie. 2019. V. 64. № 1. P. 5; https://doi.org/10.33224/rrch.2019.64.1.01
  5. 5. Howe-Grant M., Lippard S.J. // Biochemistry. 1979. V. 18. P. 5762; https://doi.org/10.1021/bi00593a003
  6. 6. Lee S.A., Grimm H., Pohle W., Scheiding W., van Dam L., Song Z. et al. // Phys. Rev. E. 2000. V. 62. № 5. P. 7044; https://doi.org/10.1103/physreve.62.7044
  7. 7. Szabo A., Lee S.A. // J. Biomolec. Struct. Dynamics. 2008. V. 26. № 1. P. 93; https://doi.org/10.1080/07391102.2008.10507227
  8. 8. Brodie C.R., Collins J.G., Aldrich-Wright J.R. // Dalton Trans. 2004. P. 1145; https://doi.org/10.1039/B316511F
  9. 9. Kvam P.-I., Songstad J. // Acta Chem. Scand. 1995. V. 49. P. 313; https://doi.org/10.3891/acta.chem.scand.49-0313
  10. 10. Puzyk M.V., Kotlyar V.S., Antonov N.V., Ivanov Yu.A., Ivanov M.A., Balashev K.P. // Optics Spectroscopy. 2000. V. 89. № 5. P. 721; https://doi.org/10.1134/1.1328126
  11. 11. Rodionova O.A., Puzyk M.V., Balashev K.P. // Optics Spectroscopy. 2008. V. 105. № 1. P. 62; https://doi.org/10.1134/S0030400X08070102
  12. 12. Baichurin R.I., Dulanova I.T., Puzyk Al.M., Puzyk M.V. // Optics Spectroscopy. 2022. V. 130. № 14. P. 2108; https://doi.org/10.21883/EOS.2022.14.53995.2253-21
  13. 13. Feoktistova V.A., Baichurin R.I., Novikova T.A., Plekhanov A.Yu., Puzyk, M.V. // Optics Spectroscopy. 2023. № 2. P. 247; https://doi.org/10.21883/OS.2023.02.55018.4480-22
  14. 14. Freifelder D. // Physical biochemistry: applications to biochemistry and molecular biology. San Francisco: W.H. Freeman, 1982.
  15. 15. Watson J.D., Baker T.A., Bell S.P., Gann A., Levine M., Losick R. Molecular Biology of the Gene (5th ed.). New York: Benjamin Cummings. 2003. ISBN 0-8053-4635-X.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library